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TECHNICAL PAPER

CORSS: CYLINDER OPTIMIZATION OF RINGS, SKIN, AND STRINGERS

INTRODUCTION

Launch vehicle designs typically make extensive use of cylindrical skin stringer construction.

Structural analysis methods are well developed for preliminary design of this type of construction. This

report describes an automated, iterative method to obtain a minimum weight preliminary design.

Structural optimization has been researched extensively, and various programs have been written
for this purpose. Their complexity and ease of use depends on their generality, the failure modes

considered, the methodology used, and the rigor of the analysis performed. This computer program
employs closed-form solutions from a variety of well-known structural analysis references and joins them

with a commercially available numerical optimizer called the "Design Optimization Tool" (DOT).

The program was written to aid in preliminary design work on the National Launch System

(NLS) project (fig. 1), but it can be used for any ring and stringer stiffened shell structure of isotropic

material that has the same type of loading. Plasticity effects are not included. It performs a more limited
analysis than programs such as PANDA, but it provides an easy and useful preliminary design tool for a
large class of structures.

This report briefly describes the optimization theory, outlines the development and use of the

program, and describes the analysis techniques that are used. Examples of program input and output, as
well as the listing of the analysis routines, are included.

OPTIMIZATION TERMS

Design constraints - Equations, usually inequalitY equations (such as "applied stress must be less
than the allowable stress"), that must be satisfied in order for a design to be feasible. DOT needs them in

a form so that when the constraint equation value is negative, it is satisfied.

Design variables - The values that define the design, such as the thickness of a plate, that are
changed by the computer during optimization.

DOT - A commercially available optimization program. VMA Engineering, Vanderplaats, Miura
& Associates, Inc. 1

Objective function - The function that is to be minimized (or maximized) during the
optimization.

Optimization - Numerical method making use of a computer to evaluate many different designs
quickly, and to select the best design based on a user-defined objective or cost function.

Note: The variable listed to the right of the equations in this report is that used in the program.
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DESIGN OPTIMIZATION 2 3

V_ables"

F

oj

S

xi, xt,. xui

objective function to be optimized, function of Xi

the array of limiting constraints, functions of Xi

optimization search vector

the arrays of the design variables, and the lower and upper design variable limits,

respectively

optimization parameters.

Modified Method of Feasible Directions

The modified method of feasible directions (MMFD) is an optimization method that follows the

driving constraints of a problem to the optimum solution. If the initial values make for a feasible design,

the f'trst iteration moves in the direction of steepest descent of the objective function to make it as small

as possible until limited by a constraint. Then the constraints are followed to the optimum. It finds

optimum solutions quickly and handles equality constraints well.

MMFD minimizes: F(Xi) i= l,N

Subject to: Gj(Xi) < 0 J = l,n

XLi < Xi < XUi

The direction of steepest descent of/_ is found by:

= -VF (or S = VF depending on the curvature of ?).

If there are no active constraints, Gj < 0, the intersection of S and the limiting constraint are

found by any of several root finding methods. This is shown in figure 2 in the move from the initial

point to the first iteration.

One or more active constraints serve to push the search direction away from the direction of

steepest descent.

If: Gj-_O The set of active constraints, j, is a subset of all constraints, J.

Minimize: V?.S

Subject to: VG_.S _<0

S.S<I .



wants to be close to the steepest descent to make V/_._ as negative as possible. S cannot get

any steeper than the tangent to the constraint curve to keep VGj.TS negative. S. S being less than 1 limits

the size of S, so the subproblem is bounded. This is shown in figure 2 in the move from the fhst iteration
to the second iteration.

If there are one or more violated constraints, the procedure reverts to the method of feasible

directions (MFD) to return to the feasible region while increasing _ as little as possible.

Maximize: -VF.S+@fl • = large positive number

Subject to: = large calculated number for violated constraints

Maximizing -VF.S+@fl chooses an S to minimize the increase in F and maximize the value ft.

fl must be small to meet the VGj constraint which is otherwise trying to send S directly back to the

border of the constraint. A one-dimensional search is also applied to choose a point on the constraint

boundary. This is shown in the move from iteration 2 to iteration 3 in figure 2.

Iterations are repeated in the appropriate manner until the optimum is found. The optimization

iterations of a beam, as an example of a simple practical problem, are shown in figure 3. The cross-

sectional area is the objective function.

•A single iteration of DOT using MMFD has several calls through the analysis part of the pro-

gram to find the gradients of the objective function and the constraints. An iteration is a major change of

the design variables after the search direction has been calculated. A typical run of the program may

have 10 DOT iterations and 100 analysis runs.

Figure 4 shows a typical optimization history for the forward skirt of the NLS rocket. Figure 4a
shows the history of the normalized design variables and weight. It can be seen that the optimizer makes

small changes to one variable at a time to find the gradients, and then takes large jumps to find the

borders of the constraints. Figure 4b shows the more critical constraint values of the problem. The rela-

tion between specific variables and constraints can be seen in the design variable and the constraint

spikes. For example, sharp drops in skin thickness show a sharp rise in the skin buckling constraint.

Sequenlial Linear Programming

Sequential linear programming (SLP) linearizes both the objective function and the constraints at

the current Xi values. It then solves for the Xi that gives the lowest/_ within the now linear constraints.

At this new point, the objective function and the constraints are linearized again and the process is

repeated (fig. 5). This is a far simpler method to program, and, although it is not as efficient

mathematically, it can be very useful in practice. It is not very good for problems which are

underconstrained because it can go far from the optimum while still decreasing/_ slightly.

4
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Linear approximation
to F(X o)

Line=r approximation
LoIt(X o} =0

12(X) = 0

tb_.=_u=d probkem.

Figure 5. Sequential linear programming)

MMFD Versus SLP

For this problem, the MMFD method (METHOD = 0 or 1 in the input file) usually seems to be

the best choice for speed and accuracy of the final solution. In some cases, particularly when most of the

constraints are active, DOT may have to make a large number of function calls for a single iteration
(more than 15 calls/iteration). In these cases, it may be better to use the SLP (METHOD = 2) method

which makes more iterations, but needs only a few function calls for each iteration.

PROGRAM DEVELOPMENT AND USE

Development

CORSS was developed on an 80386 PC, with run times ranging from 6 s to 1 rain depending on

how close to optimum the initial values are. The DOT portion of the program is written in FORTRAN
and was compiled into an optimization library. The header program for DOT, which contains the stress

and stability analysis, is written in C.

CORSS was originally written to help design the forward skirt of the NLS, however, it proved

useful in many applications on the vehicle. It was used on the payload carder adapter, the interstage, the

oxygen tank, the intertank, the hydrogen tank, and the aft structure.



Running the Program

CORSS uses a text input file and creates a text output file. The DOS command line looks like:

C:> CORSS infile outfile

where infile and ouO'ile are user defined. A menu-driven, graphical user interface was also written to

enhance the use of the program, however it is not required to run the program.

Program Input

The input file (appendix B) includes a title line, DOT flags, an output option flag, material prop-

erties, cylinder geometry parameters, stringer parameters, ring parameters, loads parameters, and the

design variables with their associated upper and lower bounds. Shown here is the variable name for each

value used in the program with a short description (less than one line) that can be kept in the input file.

The first line of the input file must be included, and is printed as a title in the output file.

IPRINT

METHOD
Screen output by DOT 0=none 7=most
method: 0,1 = MMFD, 2=SLP

"IPRINT" and "METHOD" are values used by DOT. "IPRINT" is an output flag. An "IPRINT"

of 0 means no output, and an "IPRINT' of 7 is the maximum output by DOT which is sent to the screen

and includes design variables, constraint values, gradients, and the objective function value for each

iteration. "METHOD" is the numerical optimization method used to find the minimum objective
function. If "METHOD" is 0 or 1, the MMFD is used. If "METHOD" is 2, the SLP method is used.

CORSS Output Option Flag

SSP Output, 0-final, 1-calcs+0, 2-dv/con+0, 3-dv/con+ 1

"SSP" is the output flag for CORSS. If "SSP" is 0, only the inputs and final values will be

printed out. If "SSP" is 1, values used during the calculations, such as effective widths, get printed out in

addition to the final values. If "SSP" is 2, the optimization history of the problem and the final values are

printed. The optimization history includes the design variables, constraints, weight, and iteration number

during each analysis. If "SSP" is 3, the optimization history, calculation values, and final output are all
printed.

Material Prooerties

nu

E

SM

rho
Stu

Scy

Poisson's ratio

Young's modulus, compressive
Shear modulus

Material density

Ultimate tensile stress (enter as positive)

Yield compressive stress (enter as positive)

9



Cylinder Geometry_ Parameters

r

l

fwt

Radius of cylinder
Length of cylinder

Extra non-optimized weight

The variables, "r," "/," and "fwt" are the overall cylinder geometry parameters. The "fwt" term is

only added onto the objective value for completeness of the final weight and is not used in any other
calculations. It is intended to be the weight of the end rings (such as the forward skirt to lox tank ring

and the forward skirt to interstage ring) plus any other additional weights to be included but not

optimized (such as feedthrough reinforcements).

Stringer Parameters

stype
LEB

mflag
alp
n

MZs

stringer type: "H" for hat-stringers, 'T' for 1-stringers

Allow Local Elastic Buckling [Y/N]

I-str coupled buckling flag, 0=find bucket, #=search m=l to #

web angle in degrees, 0 is perpendicular to skin

Hat to skin length (2/hat), or height of I bottom flange

1 for external stringers, -1 for internal stringers

The variables "stype," "LEB," "mflag," "alp, .... /1," and "MZs" are the stringer parameters

(fig. 6). The "stype" term is the stringer type. It must be a capital H for hat-stringers, or a capital I

for 1-stringers.

"LEB" controls the selection of constriants. For hat-stringers an "N" sets two constraints to be

the elastic buckling of the web and the top flange. A "Y" replaces those two constraints with a single

constraint for crippling of the entire stringer. "mflag" is for I-stringers only and is not used in the analy-
sis of hat sections. The "alp" term is the angle of the legs on a hat-stringer, with 0 being perpendicular to

the skin. The "/1" term is the length of one of the two legs on a hat-stringer that connects to the skin.

This length is where rivets, welds, etc., would be used to fasten the stringer to the skin.

For I-stringers, an "N" for "LEB" sets a constraint to be elastic buckling of the web, and a "Y"
replaces that constraint with crippling of the entire stringer. An 1-stringer will always calculate a coupled

buckling constraint which prevents the stringer from having too small a top flange to provide a simple

support for the web. This buckling constraint is solved iteratively by the computer for a range of buckled

waves, m. The "mflag" term controls what waves are searched. With an "mflag" of "0," the program
will start with m=l and increase m as long as the minimum critical stress continues to decrease. This is

the suggested method during an optimization to keep run time down. If "mflag" is a number, the

minimum buckling stress calculated for the range of m from 1 to the given number will be used for the
constraint. This method should be used on an analysis only run to verify that there are no local

minimums of the buckling equation. "alp" is the angle of the web of an I-stringer, with 0 being

perpendicular to the skin. Applying this angle to the web of an I-stringer approximates a Z-stringer, but
no checks are. made to see if the Z is physically possible. Also, the coupled buckling term was derived
for an T section, and should not be considered valid for a "Z" section. The "/l" term is the thickness of

the bottom flange of the I. In the NLS hydrogen tank, this was 0.02 in to allow for machining tolerance.
This additional thickness is not included in skin buckling calculations.

"MZs" is -1 for internal stringers and 1 for external stringers. It is multiplied by the neutral axis

distance of the stringer to place it on the correct side of the skin.

10
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Ring Parameters

Ar

Ir

Zr

Jr

Nrng

ring cross-sectional area

ring Moment of Inertia

ring centroid (- for internal rings)

ring torsion constant

Number of intermediate rings

The variables "At," "Ir," "Zr," "Jr," and "Nrng" are the ring properties (fig. 7). The ring is not

designed by the program, therefore the ring properties must be entered. Stringer column buckling

calculations use only the ring spacing, assumed even, as the column length. The required stiffness of a

ring is printed out. The general cylinder buckling calculations use all of the ring properties. The cross-

sectional area of the ring is "Ar," the moment of inertia about the neutral axis parallel to the skin is "Ir."

The neutral axis distance from the skin center line, negative for internal rings, is "Zr." The torsion

constant of the ring is "Jr." The number of rings, not including end rings, is "Nrng." It is best to model

segments between widely spaced ring frames as individual cylinders.

!

I

Figure 7. Ring parameters.
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Load Parameters

F

M

V

Pa

Ph

sf

sfp

Applied axial force, positive is compressive

Applied bending moment, enter as positive

Applied shear force, enter as positive

Pressure for axial loads, i.e., tank ullage (+ internal)

Pressure for hoop loads, i.e., ullage + head (+ internal)

overall safety factor

skin buckling safety factor

"Pa," the axial pressure load, is separated from "Ph,'" the hoop pressure load, because of their use
in the calculations. A bottom-supported fuel tank, for example, would have a high hoop pressure at the

bottom due to both the head pressure and the ullage pressure. However, the head pressure does not pro-

vide any tensile load in the axial direction. The "sf" term is the safety factor to be used. This applies to

all stress loads and buckling, except skin buckling. The "sfp" term is the skin buckling safety factor and

is assumed to be at least 1.0 and less than "sf." For the NLS design, a 1.4 safety factor was applied, with

a 1.0 safety factor on skin buckling. This means that at the limit load, no buckling at all can take place,

and between 1.0 and 1.4 times the limit load skin buckling is allowed, but all other failure modes must

maintain the 1.4 safety factor with the skin buckled.

Design Variables

XL[0]
h

XU[0]

XL[1]
12

XU[1]

XL[2]
tst

xu[2]
XL[3]
Nst

XU[3]

XL[4]
t

xu[4]
XL[5]
W
XU[5]

minimum stringer height

initial stringer height

maximum stringer height

minimum, hats: flange length, I's: top flange thickness

initial, hats: flange length, I's: top flange thickness
maximum, hats: flange length, I's: top flange thickness

minimum, hats: stringer thickness, I's: web thickness

initial, hats: stringer thickness, I's: web thickness
maximum, hats: stringer thickness, I's: web thickness

minimum, number of stringers

initial, number of stringers
maximum, number of stringers
minimum, skin thickness

initial, skin thickness

maximum, skin thickness

minimum, hats: top flange thickness, I's: width,

initial, hats: top flange thickness, I's: width,

maximum, hats: top flange thickness, I's: width

XL[5]=W=XU[5]=0
sets W=tst for hats

The XL and XU arrays are the upper and lower limits of the design variables. The DOT program

requires that the design variables be in the form of an X array, but this is converted in CORSS to make a

more readable code. The stringer height, not including skin thickness, is "h." The top flange length of a

hat-stringer, or the top flange thickness of an I-stringer, is "'/2." The typical thickness of a hat, or the web

thickness of an I, is "tst." The number of stringers is "Nst," and the skin thickness is "t." If W, XL[5],

and XU[5] are all set to 0 for a hat-stringer, a constant thickness of tst is assumed.

13



Program Output

The first part of the program output (appendix C), which is always printed, is the list of input

values. The second part of the output, printed if "SSP" is 2 or 3, is the optimization history with design
variables and constraint values from every run through the analysis. The third part of the output, printed

when "SSP" is 1 or 3, are values used in the calculations. The final results, which are always printed,

include a weight breakdown, a listing of the optimum design variables and the constraining values.

Ot)timization History

The design variables of each analysis are listed along with the calculated constraint values for
that call. Also included are the weight and the DOT iteration number.

Calculations for the Optimum Configuration

The fast output from the final optimized analysis is the "stringer property calculations." This

gives the individual segment values that are summed to calculate the moments of inertia, neutral axis,

and stringer area.

The "overall cylinder calculations" include the moment of inertia of the cylinder and the maxi-
mum tension stress, assuming that no skin is buckled. The applied stress without the moment load with

the safety factor and the skin buckling safety factor is also output. The ring and stringer spacings are

printed.

The "skin buckling and max shear calculations" give the axial stress and the shear flow values

for each skin segment through at least 90 ° of the cylinder and the value of the skin buckling constraint in

that segment. The maximum values of shear stress and skin stress ake saved, as well as the stress values
for the most critical section.

The "stringer crippling calculations" provides information on both stringer crippling and elastic

buckling, if required. The stringer crippling stress is always calculated and saved in case it is needed to
calculate Johnson-Euler buckling. If local elastic buckling is allowed, the critical buckling stresses are

not calculated or printed, and the crippling value is used for a constraint. For hat-stringers, if elastic
buckling is not allowed, the buckling values of the top flange and the web are calculated and used for

constraints. For I-stringers, the coupled buckling stress is always used for a constraint, and the stress
calculated for each number of waves is printed. If local elastic buckling is not allowed, the critical elastic
stress of the web is used as a constraint.

"Stringer column buckling calculations" prints the critical buckling load for the combined

stringer/skin column, as well as the applied stress, the effective width of skin on the most highly stressed

stringer, and the combined moment of inertia and radius of gyration. If the skin buckled, the section
starts with the number of iterations that were required to converge on the effective cylinder moment of

inertia, and the maximum tension stress calculated from the new section properties. The fast table lists

the distance from the cylinder center line of each stringer and the skin next to it, the stress for each

stringer and skin, and the effective skin width associated with each stringer. Values are only calculated

over half the cylinder, and only where the skin is buckled, with the other half being assumed sym-

metrical. The second table lists the areas and summed properties that are used for the new cylinder

moment of inertia calculation. Only the sections that have skin removed are listed, and if hat-stringers

are being used, the listing includes whether it is between stringers (skin) or between the legs of a single

stringer (stringer).

14



The "generalcylinderbucklingcalculations"arenotperformedif theskin hasbuckled.Whenthe
skindoesnot buckle,thesmearedorthotropiccylinderstiffnesspropertiesandA-matricesfor bothaxial
andpressurebuckling areprinted.Also shownarethedeterminantsof thetwo-by-two andthethree-by-
threeA-matrices. If the numberof axial half wavesequalsthe numberof cylinder segmentsbetween
rings, the rings arenot supportingthecylinder, anda warningthat the smearedpropertieswill not be
valid is printed. Thenumberof axial half wavesandhoopwavesis printed out.The axial andbending
knockdownfactorsareprinted,aswell astheline loadasadjustedby theknockdownfactors.A message
is printedstatingthateithergeneralcylinderbucklingor stringercolumnbuckling providesthegreatest
support.Themorefavorableof thetwo valuesis usedin theshellbucklingconstraint.

The"stresscheck"performsaVon Misesstressevaluationat threepoints, andthemost highly
stressedpoint is usedin the constraint. The fin-st point is the maximum compression location where the

bending moment applies compression at the "top" of the shell. The second point is along the centerline

of the moment application where shear is the highest and bending stresses are the lowest. The third point
is the maximum tension location where the moment applies tension at the "bottom" of the shell. This

point can still be in compression, depending on the axial load applied.

Final Results

The weight of the cylinder is printed along with the optimum design variables. The stringer

properties and the required ring stiffness and area are listed. The ring area is a function of the ring depth,

Z, which is negative for internal rings. Also listed are the constraint values--which must be negative to
be satisfied. The skin buckling ratio and the general cylinder buckling ratio must be less than 1, and the

applied loads must be less than the critical loads. A warning is printed for any violated constraints.

Program Use

This design problem is nonlinear, has several discontinuities, and can be susceptible to solving

for local minimums. The suggested use of the program is to select a large range between the upper and

lower limits of the design variables. Then run the first case with the initial design variables set near the

lower bound, and the second with the design variables set near the higher bound. If the results do not

agree fairly well, apply engineering judgment to the results from the first two runs to select initial values

near what the optimum should be.

It is also important to look at the output to see what constraints are driving the design. There are

usually at least two driving constraints. The NLS designs are usually driven by skin buckling and either
column buckling or local stringer buckling. If there is a very high value for a constraint, such as a critical

skin buckling stress of 400,000 lb/in 2, then that may indicate that a much lower initial value for skin

thickness should be tried. If the only driver is shell buckling, that may indicate that additional rings are

needed to shorten the column length.

If general cylinder buckling is a driver, it may be important to make sure that the use of fewer

rings will not allow buckling. The assumption in general buckling is that the rings are spaced closely

enough that their properties can be smeared into an orthotropic shell. For large, widely spaced rings, this

is not a valid assumption, and a more conservative case should be checked. It is best to run each segment

between widely spaced rings independently.

After running the program and getting results, such as 147.3 stringers and thicknesses of 0.0697
inch, the constraints and initial values can be set to more realistic numbers, such as 147.0 stringers and

0.071 (a standard aluminum gauge thickness). When the initial value and both the upper and lower

bounds are set equal, the variable is treated as a constant and is removed from the optimization routines.

15



This elimination of variables can significantly reduce run time, and allows the program to perform a skin

stringer analysis only, with no optimization calls, by setting all the design variables as constants.

By using I-stringers and setting the top flange thickness and width to a very small number,

simple blade stringers can be modeled. The width must be the smaller of the two values.

When using 1-stringers, the user should be careful that the sum of the bottom flange thickness,/1,

and the maximum top flange thickness, 12, cannot exceed the minimum stringer height, h. If this

happens, the program will exit with a warning to prevent a divide by 0 run time error.

Cones

Although CORSS was written for cylinders, cones with a half angle less than 30 ° can be modeled

in a slightly more lengthy process. Assuming that the end tings are sufficient to take out the radial force

components, the axial load should be broken down into components along the side of the cone, and the

applied axial load and shear adjusted (fig. 8):

V F,VFeq = F cos (0) Veq = cos (0)

The first step is to make two runs using a very short length at the top radius and at the bottom

radius. The length should be short enough to prevent general cylinder buckling from being a driver.

Taking the more conservative run will design the number of stringers, the stringer cross section, and the
skin thickness. Then set the skin and stringer values as already designed and check that the general

cylinder buckling constraint is met. Use an equivalent cylinder with: 4

rsmall end leq = h cone
req = COS (0) COS (0) " r,1

If general cylinder buckling is not satisfied, change the ring locations and start again. It is best to
analyze each segment of the cone between rings separately because an optimum cone will have unequal

ring spacing to reduce shell buckling. 5

7"HEE4 --_,

i

, 1 i
I

T /
? /

FEO F

VEO

Figure 8. Conical analysis.
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OVERALL CYLINDER CALCULATIONS

Variables: Subscripts:

A cross-sectional area 1,2 principal stress directions

F applied axial force a axial

Fwt additional nonoptimized weight cl center line

Io cylinder moment of inertia with no skin buckled cb Coupled Buckling

/st moment of inertia of a single stringer cr critical

l length of cylinder crip inelastic crippling

M applied bending moment cy compressive yield
N st number of stiffeners gcb general cylinder buckling

N Line Load h hoop

P pressure r ring

r cylinder radius sk skin

sf safety factor slb stringer local buckling
t skin thickness st stringer

Y distance from center of cylinder t tensile
Z neutral axis distance from the skin

p material density
tr stress
z shear stress

The moment of inertia of the entire cylinder is used in many places throughout the program. The
initial reference Io is calculated with all of the skin effective and assumes that the stringers are evenly

spaced: 6

I0 = ff tr cl3+Nstl st+_.a4 aYst 2 , Io

Ysti=(r+Zst)cOs( 2xil
' lV,,I"

Yst

The maximum applied tension stress is only used to make sure that the maximum stress of the

material is not exceeded. This load is only tensile if the moment overcomes the axial compression.

Because the input file requires the axial force to be positive for compression, tensile forces are negative.

Assuming all the skin is effective:

-M(sf)r (F-Paxr2)(sf)

at = Io 4 2xrt+AaNst

The objective function for the optimization is the weight of the cylinder:

Weight = [21t ra t l + AM N,, + A,N, 21t(r + Z,)] p + F,_. obj

The limiting constraints of the optimization are:

Skin buckling:

trsk ['rsk) 2
tr cr.--'---_+ _T_crI < 1 . G[0]
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Shellbuckling:

If the skin buckles,the generalcylinderbuckling equationsareinvalid, and this failure is con-
trolled by stringercolumnbuckling.If thereis noskinbuckling,thenbothcolumnbucklingandgeneral
cylinder buckling arecalculatedand themost favorablevalue is used.This reflects the ability of the
stringersto carry loadwithout theskin in somecases,andfor theskin to transferloadacrossstringersin
othercases.

Stringercolumnbuckling:
0. st < 0. cr, st •

G[I]

General cylinder buckling:

-Ph(Sf ) G[I]N + <1.
Ngcb Vcr

Allowable material stress:

[(0.1-0. 92+0. 22+0"_]*h < 20'..
G[2]

For hat-stringers:

Inelastic stringer crippling:

0. crip > _r st .
G[3]

or local elastic stringer buckling:

_lb, flange > _st

Olb,web > _st .

For I-Stringers:

I-coupled buckling:
_cb > _st ,

and, inelastic stringer crippling:

acrip > 6st ,

or local elastic stringer buckling:

_lb, web > _st •

G[3]

G[4]

G[41

G[3]

G[3I
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STRINGER PROPERTY CALCULATIONS

Variables:

A

al

D

dy
h

hst

Ix
Ix

Jst
K1,K2
lsl
II

12

ta
W

Y
zs,
Ot

• _area

torsional constant component

diameter of the maximum inscribed circle at the web/flange junction

in an 1-stringer

distance of reference axis parallel to the skin

stringer height

slant length of a hat-stringer web

stringer moment of inertia about axis parallel to the skin

moment of inertia about axis parallel to the skin

torsional constant of the stringer

torsional constant components

projected slant width of a hat-stringer web

hat: stringer to skin flange length, I: bottom flange thickness

hat: top flange length, I: top flange thickness

hat: stringer thickness, I: web thickness

hat: top flange thickness, I: Top flange width

neutral axis distance from reference line parallel to the skin

stringer neutral axis distance from the skin center line

angle of the web of a hat-stringer

0,1,2,3,4 individual stringer segments

CORSS computes the area, moment of inertia, torsional constant, and the neutral axis of a stringer.

The slant width is also returned for hat-stringers. These returned properties are used throughout the

program.

For a hat-stringer s (fig. 6):

h ha
hsl- COS (Or) '

lsl = hsl sin (a) , la

Ao = lltst

A1 = hsltst

A2 = 12W

A3 =A1

A4 = Ao

dyo = tJ2

@1 = hi2

dy2 = h-WI2

@3 =dyl

dy4 : dyo

_ llts 3

lx o = lx 4 ='-_ " , Ix[0],Ix[4]

IXl=IX3=tsl_{h21cos2(oO+t2sin2(oO} , Ix[1],Ix[3]
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For anI-stringer9 (fig. 6):

If 12 < tst

If &t > 212

Jst _

4[(h+t/2-W/2)(12+la)]a

12t21a + 2ha

Ao = W 11

A1 = tst(h-12-11)

A2 = WI2

dyo = 1112

dyl = (h-12-ll)/2+ll

dy2 = h-12/2

/Xl=

ta(h-12-I 1) 3

12

Ix2= W l_
12

K1 = W _[1-.21--_( 1 12/2W, )]

192(h -Is)"

12 w
al = 0.15 _st else al = O. 15 tst

12 •

D=tst else D=I 2+4l---_ '

Jst = K1 + K2 + (al) D 4

Ix[2]

Js

Ix[0]

Ix[l]

Ix[2]

K1

K2

al

D

Js
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Forbothstringertypes:

I_=ZI_+Z(Ady_)-yZ(Ady),

t
L, = L Z,, = y + -.

2

SKIN BUCKLING STRESS CALCULATIONS

Variables:

Ast

bpl
d

E

F

1o

K, K1

Kc, Ks
M

Nst
Pa, Ph

q
r

sfp
t

V

Y

Z

Zst

¢7

T

V

stringer area

distance between simply supported points on the skin

ring spacing

Young's modulus

applied axial force

cylinder moment of inertia with no skin buckling
skin buckling pressure stabilization factors

skin buckling factors for compressive and shear loading, respectively

applied moment

number of stringers

applied axial and hoop pressures, respectively
shear flow

radius of cylinder

skin buckling safety factor
skin thickness

applied shear

distance from neutral axis of cylinder

nondimensional parameter for calculating Kc and Ks

Stringer neutral axis distance from skin surface

skin buckling pressure stabilization factor
stress

shear stress
Poisson's ratio

i

cr

sk

sequential location index
critical

skin

ybar

Ix

Is, Zs
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Theskin bucklingconstraintis afunctionof axialstressandshearstress:7

<1.

Thecritical skinstressfor anaxial loadis:

Kc tr2E t

trcr- 12(1_v2)

b2l

g0max

Scrpl

Z

VALUES OF Kc (fit, Z)

r/t Z<4 4 <=Z<40 (y =Z-4) Z>=40

100 4 -0.000179569 y3 + 0.0154 y2 0.4 Z

+ 0.0089413 y + 4

-0.000159922 y3 + 0.0140199 ),2

+ 0.00810034 y + 4

-0.000127178 y3 + 0.011594 y2

+ 0.00669873 y + 4

-0.00100982 y3 + 0.00965326 y2

+ 0.00557741 y + 4

-6.1688E-5 y3 + 0.00674219 y2

+ 0.00389547 y + 4

300 4 0.375 Z

500 4 Z/3

1,000 4 0.3 Z

1,500 4 0.25 Z

The equations for Kc for Z between 4 and 40 are cubic spline curve fits to plotted curves. 7 For

Kc > 40 the curves are straight lines on a log-log plot. Kc is linearly interpolated between the appropriate

curves with r/t values less than 100 being treated as r/t = 100, and r/t values greater than 1,500 being

treated as r/t = 1,500.

Internal pressure has a stabilizing effect on cylinders and raises the critical skin stress: 8

Ph(rl2 alpha

22



1+3o_

K 1 =0.16 r
t

K

K1

_cr = a cr_Ph = o+(K+K1)E t_
r

The critical shear stress is: 7

Ks_2E(t) 2Zcr- 12(1_V2) _p/ '

KS _ 4.94002871

+ 2.96028833E-4 Z s

- 1.79230370E--10 Z 6

+ 2.83295655E-1 Z

- 5.59394768E-6 Z 4

The equation for Ks is for an inf'mitely long plate and will be conservative.

Axial stress in the skin is:

M(sfp)Ys_ i (F-Palrr2)(sfP)
+

trslci - Io 2m't+A stNst

Internal pressure is not multiplied by the safety factor.

Shear stress in the skin is:

q0 _-_ m-V(sfp) Aa (r + Z,,)Io

qi = qi-1

Scrpl

taucr

- 8.48571232E-3 Z 2

+ 5.12790432E-8 Z 5

V(sf-p)A stYst'i q[il
Io

Ssk[il

qi
tau

Each section of skin between stringers is checked, with the highest combination of stress and

shear being used in the design.

The buckling load drivers are also retained to trigger "effective skin" calculations later in the

program if necessary.
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STRINGER CRIPPLING CALCULATIONS

Variables:

Ab

b

E

l

12

m

tst
W

($

V

flange area

length of web

Young's modulus

cylinder length
I-stringer top flange thickness, hat-stringer top flange length
number of buckled waves

I-stringer web thickness

hat-stringer top flange thickness, 1-stringer width
stress

Poisson's ratio

crip inelastic crippling
cy compressive yield

Ib local stringer buckling

st stringer
x axial

For hat-stringers, if local elastic buckling is allowed, a single crippling constraint is placed on the

stringer. If elastic buckling is not allowed two constraints are applied, buckling of the web and buckling

of the top flange.

The equation for crippling of a plate simply supported on both sides is (curve fit from graph of

reference 11):

1.387194
-" .807179

Ocrip (jOcy(12__tst), _ (Ycy Sl

This value is cut off at a maximum value of the material tensile ultimate stress. The crippling of

the individual segments is averaged to give the stringer crippling stress:

X(afl g .i/, flao#
, Scrips

(Yst, crip = _ flange

This is calculated even if elastic buckling is not allowed in case it is needed for Johnson-Euler

buckling of the stringer column.

If local elastic buckling is not allowed, the buckling stress of the flange and web are checked. For

a plate simply supported on both sides, the elastic buckling stress for the top flange is: lo
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.2,4.v,,)2 $2

I-Stringers have a coupled buckling constraint and either an elastic buckling or a crippling
constraint. The crippling stress of half of the flange is that of a plate simply supported on one edge and

free on the other (curve fit from graph of reference 11):

.569311
(_crip "- .812712 _cy

This value is cut off at the material tensile ultimate strength. This is applied to the flange while

the web crippling is calculated from the equation of a plate simply supported on both sides. These are

averaged into the stringer crippling stress in the same manner as for a hat-stringer.

Elastic buckling is applied only to the cap of the I-stringer The stringer cap is treated as two

plates; each half the cap width and simply supported on one side (at the web) and free on the other.

The coupled buckling stress is calculated for checking elastic buckling of the I-stringer web. This

failure mode is described in appendix A. The governing equation is:

_0_ 2_v (_._)2] sinh(otb))(El sin (fl b)(_-_)4+D{_fl 3+fl(2_ v)(___)2] cos (flb)}- AbG x sin (fl b)(___) 2)

+ (El sinh (ctb)(___)4 _ D{lct 3_0_(2_v)(_._)21 cosh (o_b)}-AbG x sin (t_b)(__ff)2)Off 2+ v(____)2 ] sin (fib)) = 0,

where

I(-_--)2+_[Nx(mff_ 2a= fl= - +VD\ I J $2

12w 3 Nx
D - E ts_ At,= 12W I crx

12(I_v 2) - 12 ='_t

This equation is solved iteratively using the secant method. Several trials of the equation are used

to insure that the lowest root is bounded by the starting values. The buckling stress is a function of the

number of waves in the buckled shape. This is usually 1, but not always. An mflag of 0 will cause the

program to start by calculating the stress for 1 wave, and increase the number of waves until the

buckling stress increases. An mflag of a number will cause the program to start at 1 wave, and increase

to the given value. This could cause problems during an optimization because high numbers will add a

significant amount of run-time. Also, if the buckling stresses are too high, overflow errors may occur.
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COLUMN BUCKLING CALCULATIONS 6

Variables:

A

b

be
d
E

F

I

Io

M

Pa, Ph

r

sf
t

W

Y

Z

Y

Pg

area

stringer spacing

distance between fixed points on the skin

ring spacing

Young's modulus

applied positive compressive axial force
moment of inertia (if no subscript, I of entire cylinder with buckled skin)

cylinder moment of inertia with no buckled skin

applied moment
applied positive outward axial and hoop pressure, respectively

cylinder radius

safety factor
skin thickness
effective skin width

distance from center of cylinder
neutral axis distance

cylinder neutral axis distance from the center

stringer radius of gyration
stress

cr critical

crip crippling
cyl total cylinder

flange single stringer flange
i sequential location index
lb buckled skin

r ring
sk skin

st stringer

The program is written with the ability to apply a different safety factor to skin buckling than to

other forms of failure, with the assumption being that some cases will allow the skin to buckle as long as
the ultimate load can still be carded. This is the case for the first design cycle of the NLS for which this

program was originally written. The skin cannot buckle at a safety factor of 1.0, but can at a safety factor
of 1.4, which is the required factor on all other forms of failure.

The amount of buckled skin is dependent on the stress of the stringer, and an iterative process is
needed to remove the "ineffective" skin area. The "effective" skin is assumed to be prevented from

buckling by the stringers and to carry the fully developed stringer stress. First, the stress is calculated

from an assumed cylinder moment of inertia, then the ineffective skin around each stringer is removed, a

new cylinder moment of inertia is calculated, and the neutral axis location is moved. The column stress
is recalculated with the corrected I and neutral axis. This repeats until a value of I is converged upon,

which is usually after only a couple of iterations. The program allows no more than 20 iterations before

defaulting to an I of Io!2 and printing a warning.
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If theskin buckles,it is assumedto carry90percentof the critical skin buckling load:

tY lb = 0.9 (Y sk.cr • Slb

The stress is calculated at each stringer, and at the center of each skin panel. For the initial

iteration, y = 0, I = Io/2, and Y-Ai = 0:

(F-Palrr2)(sf) M(sf)(Yst,i+y)

a st'i = Acyt-_,A i + I ' Sst[i]

(F-Paltr2)(sf) M(sf)(Ysk, i+ _)

tYsk, i = + Ssk[i]
A cyl-,__,A i I

If Pa is positive, it is assumed to be relieving the stress and is not multiplied by the safety factor.

Effective width for each stringer is calculated from stringer stress:

W/= 0.85 t _ E
(Yst,i

We[i]

This width extends from a fixed point on the skin, a rivet line for a hat-stringer or the web for an
I-stringer, in one direction. Total effective width about a fixed point is 2 Wi.

The effective width is checked against the width between fixed points on the skin. It is assumed

that the stress in the skin does not increase after buckling. Since some skin is left in to account for the
load that the buckled skin does carry, the ineffective area is:

_O'i-O'lp
A i - [(total width) - (effective width)] . A

O"i

With the ineffective area known, ._ and I can be recalculated:

Y= _'Ai Yi ybar
(A_y, - ]_ ai )

I = I1o- Z(A, y_) - (A_t- EA,)y 2

The new y and I are put back into the stress calculations, and the operation is repeated until new
values for I and the applied column stress are converged upon.

The total effective skin width of the most highly stressed stringer, be, is added to the moment of

inertia of the stringer to be used in calculating the buckling load of the total column:

27



[st+a = bet3 2 (AstZst) 2
+ la+AstZst A_t+b,t

Ise

The radius of gyration is:

radg

For long columns, the Euler critical column buckling, simply supported with an effective length

of d, is:

Scrstcol

For short columns, the Johnson-Euler buckling equation is used. The weighted average of the

inelastic crippling stress is used as the stringer crippling stress: 7

_/ 2 d2
For d < ft" 2E . O"st,crip Scrstco1

Ps 2 "
fYst, crip _ cr= _rst'crip 47r2E p g

The assumption is that the rings are stiff enough to enforce the panel buckling mode shape

(fig. 9_i). The required ring stiffness is:lO. 11 (See appendix A, section 2)

0.172 try,_,+,,(A,,+ b t)r3
I_= ' El

dE

The required ring area is: 1° (See appendix A, section 2)

4 _21,k +,,r( r - 7_.)

A, = bd 3
Ar

The required stiffness and area are printed, but are not used in any calculations.
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(a) Panel instability.

(b) General instability.

Figure 9. Mode shapes for panel and general instability of stiffened cylinders in bending. 7
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GENERAL CYLINDER BUCKLING CALCULATIONS 12

Variables:

A(1,2,3),(1,2,3)

Anew

At, Ast

b

Cx, Cy, Cxy
d

Dx, Dy, Dxy
E

Ex, Ey, Exy
F

G

Gxy

Ir, [st

Jr, Jst

fxy
I

M

m

n

N, NF, NM

P_, Ph

Pcr

l"

sf
t

Y
Z,, Z,t
¢
_,TM
V

buckling matrix

cylinder area with ineffective skin removed

ring and stringer areas, respectively

stringer spacing

coupling constants for smeared orthotropic shells

ring spacing
bending stiffnesses for smeared orthotropic shells

Young's modulus
extensional stiffnesses for smeared orthotropic shells

applied axial force
material shear modulus

shear stiffness for smeared orthotropic shells

ring and stringer moments of inertia

ring and stringer polar moments, respectively

coupling constant for smeared orthotropic shells

cylinder length

applied moment
number of axial buckling half waves
number of circumferential buckling waves
total line load, line load from axial forces, line load from bending moment, respectively

critical line load

applied axial and hoop pressure, respectively

critical hoop pressure

cylinder radius

safety factor
skin thickness

cylinder neutral axis distance from centroid
ring and stringer neutral axis distance from skin, respectively

factor for calculating line load knockdown

axial and bending knockdowns, respectively
Poisson's ratio

The cylinder buckling limit is a function of axial line load and crushing pressure, and is:

lVM -Pgs.t)
< 1 . G[ll

Internal pressure is considered only to lower the applied compression stress, and no other

pressure stabilization is considered.

If the critical line load is at a higher stress than the compressive yield stress of the material, then

a warning is printed that if loading increases above limit load, plasticity effects can lower the capability
of the shell.
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Thestringerandring propertiesaresmearedoverthecylinder to providepropertiesof anequiva-
lent orthotropic cylinder. Sincethe assumptionto makethis valid is that the stringersand rings are
closelyspaced,it is bestto modelsegmentsbetweenwidelyspacedrings asindividual cylinders.

The smeared,orthotropicpropertiesare:

Et Ast

Ex=__v2 +E-- b '
Ex

Ey = _Et A r Ey
l_v 2+E d '

vEt

E,x-y - 2 ' Exy
1-v

Et
Gxy - , Gxy

2(l-v)

Dx - Et3 E Ist Z2tE A st+ + -- Dx
12(l_v 2) b b '

JEt3 I r z2EAr+E--+ -- Dy
Dy- 12(1_V2) d d '

Day- Et3 + G_ + G-- , Dxy

6(l+v) b d

A st

Cx = Zst E b '
Cx

A r

CyCy =ZrE--
d '

3
t

Cxy = Kxy = 12(1_v2) . Cxy,Kxy

These properties are built into a two-by-two and a three-by-three matrix. The values m and n are

increased until the lowest critical line load is found. For critical pressure, m is set to 1 and n is increased

until the lowest critical pressure is found.
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(7)2A 1,1 = Ex -- +Gxy ,

A2, 2 = Gxy + gy ,

A'-_[T] +_'t-;r-:+_7+7 +_; _*_ C_r__ ,

All

A22

A33

m_ n

AI'2=A2'I=(Exy+Gxy) 1 r

A2.3=A3.2=(Cxy+2K.ry)(mx_2n n (n) 3_7] - + Ey ---_ + CYrr

mlrF_A-y [ m_ 3 mTr n 2

= - +Cx[--_] + (Cxy+2Kxy) 1 rA3A A 1,3 rl _ -'_ "

The critical line load is calculated by:

_

12

(re;r) 2

A1,1 A1,2 A1,3 /

det|A_,lA=A.I
_A3,1 A3,2 A3,3]

The equations for the knockdown factors are:

yF = 1-0.901(1-e -_) yM = 1-0.731(1-e -_) ,

. r ) 112
E x Ey

29.8

The applied line load, N, is calculated from:

N" = M(sf)(r + Y) (-_ -+ t )I
NF = (F- Portr2)(sf)fA,, "_

A,,,, tT+'J

A12,A21

A23,A32

A31,A13

Nx

gamF, gamM

Phi

• NM, NF
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If Pa is positive, it is not multiplied by the safety factor.

The critical crushing pressure is:

r

Pcr= 0.75
n

f AI,1A1,2A1,3)
det/A2,1 A2, 2 A2, 3

_A3,1A3,2A3,3

:A1,1 A1,2 /

det A2,1 A2,2]

Sa

VON MISES STRESS CHECK

Anew
P

r

sf

t

t_

cylinder cross sectional area with ineffective skin removed

pressure
cylinder radius

safety factor
skin thickness

stress
shear stress

a axial

cy compressive yield

h hoop
max maximum

sk skin

st stringer
t tensile

x axial direction

y hoop direction

o at the first (most highly stressed) stringer location

1 first principal stress direction
2 second principal stress direction

The applied Von Mises, or Maximum Distortion Energy, stress in the cylinder is checked against

the allowable material stress. Three points are checked: the point of maximum compression, the point of

maximum shear, and the point of maximum tension.

The point of maximum compression is where the bending moment and compressive axial force

are working together, and the shear stress is a minimum:

-Phr(SF)
tr x = o"a cry - t "t'xY= _:_o - Sx, Sy, tauxy
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Thepoint of maximum shear is the point where the moment does not affect the stress:

(F-Pa_r2)(sf) -Phr (SF)

0-x = Anew 0-Y t 'fxy = _'max •

The point of maximum tension is where the moment creates a tension load:

0-x = 0-t 0-y -

The principal stresses are calculated:

Sx, Sy, tauxy

-ehr(SF)
t _'_ = lrs*,o • Sx, Sy, tauxy

ax'l'0-Y /[0-X--0-Y _2 2

0-1,0-2- 2 +V_--_-) +r_ .

The Von Mises stress is calculated from the principal stresses and compared to the compressive

yield stress:

_. .2 2 21'O"1-O"2) +0-2+0-1 < 0-cy • VMS
2

S1, $2

SUMMARY

CORSS provides a state-of-the-art preliminary design tool, linking the analysis of a skin stringer

construction with a numerical optimizer. It allows a large variety of different designs to be evaluated
quickly, and easily allows limits, such as from manufacturing facilities, to be included. All of the major
failure modes are checked.
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APPENDIX A

A1. I-Coupled Buckling Equation Derivation

The method used to solve for the lateral stringer cap buckling load is taken from reference 10,
section 9.4, pages 360-370. The stringer is idealized as shown in figure A1 below. The stringer web is
modeled as a plate with lateral support at edges y -- 0 and y -- b. At edge y = 0, the web is rigidly sup-

ported by the skin, and at edge y = b the web is elastically supported by the stringer cap. In this analysis,
the torsional stiffnesses of the cap and the skin are conservatively neglected, so the edges at y -- 0 and

y ---b are both modeled as hinged.
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Figure A1. Lateral tee-stringer cap buckling model.
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Figure A2. Lateral tee-stringer cap buckling.

PNVi,_ P_C.,6 ll!.AN_(NO1 FILkl)-

37



The stringer cap is assumed to move laterally as depicted in figure A2. This motion is resisted by

the cap in bending. In the limit as the cap becomes infinitely stiff, the result will approach that for a web

simply supported along both sides y = 0 and y = b. The stringer dimensions are shown in figure A3.

j Skin

bw tw

s ngerc 

Stringer web

9_

tc

l
t

Figure A3. Stringer dimensions.

The governing differential equation for the lateral deflection of the web is

B4W O_4W B4W Nx o_2w

+ 2 t- = -
tgx" o3x2o3y2 oay4 D cgx2

The boundary conditions at x = 0 and x = a are automatically satisfied by setting

mF/.x
w = f(y).,,.qmsin

.=1 a

Substituting into the governing differential equation, we find that for a non-trivial solution w(x,y), the

following equation must be satisfied:

dy 4 dy"--Y+ -D\ a ,/ J =0 .

This equation can be easily solved when Nx is a constant (see reference 10, page 361, or reference 13,

page 434). Then, assuming

N_>
D

the general solution is

f(y) = A sinh (oty) + B sin(fly) + C cosh(oty) + D cos(fly) ,

in which
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Now, if the sidey = 0 is simply supported and the side y = b is supported by an elastic beam, we have

the following boundary conditions:

for y = 0: w=0

t_2W
m=0

dy2

(i)

(ii)

O_2W t_2W

for y = b: By _ I- V-_x 2 = 0 (iii)

To obtain a second boundary condition for the side y = b, bending of the supporting beam must

be considered. We make the assumptions that the beam is simply-supported on both ends, that it has the

same modulus of elasticity as the plate, and that it is compressed together with the plate so that the

compressive force on the beam is equal to Abt7 x where Ab is the cross-sectional area of the beam.

Denoting by EI the flexural rigidity of the beam, the differential equation of its deflection curve is

04w . O:w

El'_x4 = q - Ab a,'_i'x: ,

where q is the intensity of the load transmitted from the plate to the beam. From expressions for sheafing
forces (see Timoshenko and Gere, p. 330), this intensity is:

_r o3w , a3w ]

q = DL-_-T+ (2- V'dx--'_J •

Substituting this value into the deflection curve yields the final boundary condition for y = b:

o'w_ro'w .o,wI o'w <iv)
EI-_2_-,= _-_- + (2- v)a-_-_J- A' a, Ox---r •

Conditions (i) and (ii) require that C = D = O. Now, we can write

f ( y ) = A sinh( oty ) + B sin([iy ) .

The remaining boundary conditions can be used to obtain two algebraic equations for A and B.

From (iii):

2 ,,* 2
d f . mxx mx " . mxx

(__2 _._q,,,sm(--]-vf(,,(--I _,q,.sm(--_] =0

\ ay ,,,=_ \ a ./ \ a ,/ ,,,=_ \ a :)iy=_
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For this series to sum to zero for arbitrary x and y, each term must vanish and we can write

a/ -d- ,=,

Substituting forf(y) and simplifying yields the first equation for A and B

Find derivatives for (iv):

. ,.4 ,, t" mffX_

_x 4 \ a : m=t _, u /
4 -

o_'w / sin(flb))(a)_q,,sm(m_a)= (A sinh(e,b)+ B

dx /,=b

-_3__wl =(ace' cosh(o_b)+ Bfl 3c°s(/Sb))Zqmsm T

O_w ( )t,m_..q.n,_2=. . :mltx'_
"_'_x2=-f y t a ) _-__tq'' slnt_)

)-;q'_'nt,a J
"=_X2 ly=b m=l

df mst 20. sin(infix _

_x_dy=

ax_ayl,:, .:'

Again, we eliminate the factor
_q,_ sin-_ by considering equation (iv) term by term
m=l

:aT+ Ab ax[-A sinh(ub)- B sin(/3b) = 0

(1)

40



Collecting terms in A and B, we have the second equation

AIEI sinh(t_)(_--_y - D{[tx3- or(2 - v)(_-_) 2]cosh(txb)}-Ab o'x sinh(ctb)(_-_) 2]

+B E/sin b +D 3+ 2-v cos b -AbCrxsin

=0

(2)

For a nontrivial solution, the determinant of the coefficient matrix for equations (1) and (2) must vanish.

This will yield a transcendental equation for the critical stress

tort 2

([ot2-_m--_a )2]sinh(otb'_E's'm(flb(m_a )4+D{[fl3+fl(2-v)('_) ]cos(flb)l-Ab_sin(flb)(m_a l2)+

Elsinh(trb(_.._) 4 - D{[ 3- or(2_ v)(_) 2 ]cosh(trb)t_ Ab o.x sinh(trb)(_.._) 2 lift2+ v(_._) 2 ]sin(fib))

=0

This equation can be solved by trial and error. The following substitutions will aid in the solution:

N_ = ty_tw Ab =be tcb=bw a=l

E t_ I= tcb_

12(1 - v 2) 12
D

Solve for m = 1, 2, 3 .... to find the lowest critical stress. Check the web and cap as usual to determine

which buckling mode, lateral or local, occurs first.

Note that at first glance, fl = 0 is a solution which yields

D

This solution is not valid, however, because owing to some constraints along y = 0 and y - b, we always
have

_ °

D
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A2. Ringframe Sizing Equation Derivation

The method used to solve for the required ringframe bending stiffness is taken from reference 10,

section 2.6, pages 70 to76. It was originally suggested by Tom Severs of Martin Marietta Manned Space
Systems. In this method, a section of the shell consisting of one stringer and the skin adjacent to it is

modeled as a beam on elastic supports. The ringframes are the elastic supports and are assumed to be

equally spaced and sized. Their size is calculated so that they will function as if they are infinitely stiff

and force buckling nodes in the idealized beam. The required support stiffness is

mP

where m is the number of spans, y is a numerical factor which depends on the number of spans, and

P = m2tr2El/12 is the critical load for one span as for a beam of length l/m with hinged ends. As the

number of spa0.s increases, y decreases, approaching a minimum of 0.25. For conservatism, we choose

), = 0.25. Then

4mP
Ot-

l

Now, to equate this required support stiffness to a required ring stiffness, we use the analysis of

rigid rings from the reference 1 l, in-plane load case 1, B.6.1.1 page 8-9. From this reference, we find for

= 0 °, KA = 0.043, and

pR 3
A =K A

E1

from which

P

Assuming a unit deflection, A = l, _- = a, and we have

Ire q ----K a

otR 3 O.172mPR 3
m

E El

Converting this equation to be in terms of stress, and using the notation in the main body of the paper

/_ = 0.172 Gcr'sk+st(Ast +bt)r3
dE

The required ringframe area is calculated using equation 11-21, on page 493 of reference 10

A, - 41t21'* +"r( r - Zr )
bd 3
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APPENDIX B

Sample Input File

FSKTDOC.CIN, NLS MaxQ Loads

0 Screen output by DOT 0=none 7=most,IPRINT

1 METHOD 0,2=Mod.Meth.of Feas.Dirs.,2=Seq.Lin. Prog

3 Output, 0=final,l=final calcs.+O,2=dv/con+O,3=dv/con+l

0.330000 Poisson's Ratio

10800000.00 Young's Modulus, compressive

4000000.000 Shear Modulus

0.111000 density

63000.00000 Ultimate Tensile Strength, enter as positive

53000.00000 Compressive Yield Strength, enter as positive

165.500000 radius of cylinder

48.000000 length of cylinder

0.000000 extra non-optimized weight

H stringer type, 'H' for hat-stringers, 'I' for I-stringers

Y Allow Local Elastic Buckling [Y/N]

0 I-str coupled buckling, 0=find bucket, #=search m=l to #

15.000000 web angle in degrees, 0 is perpendicular to skin

0.920000 hat to skin length (2/hat), or height of I bottom flange

1.000000 1 for external stringers, -i for internal

0.605000 ring cross sectional area

1.669000 ring Moment Of Inertia

-2.099000 ring centroid location

2.952000 ring Polar Moment Of Inertia

0.000000 number of intermediate rings

410481.90 Applied Axial Force, positive is compressive

91520000.00 Applied Bending Moment, enter as positive

98372.00000 Applied Shear Forvce, enter as positive

0.000000

-0.087000

1.400000

1.000000

1.000000

1.500000

5.000000

1.000000

1.500000

5.000000
0.025000

0.040000

0.250000

100.000000

180.000000

360.000000

0 025000

0 070000

0 250000

0 000000

0 000000

0 000000

Axial Pressure (i.e. tank ullage) +internal

Hoop Pressure (i.e. ullage+head) +internal

overall safety factor

skin buckling safety factor

h min, stringer height

h init

h max

12 min, hat: top flange length, I: top flange thickness

12 init

12 max

tst min, hat: stringer thickness, I: web thickness

tst init

tst max

Nst min, number of stringers

Nst init

Nst max

t min, skin thickness

t init

t max

W min, hat: top flange thickness, I: width

W init, hat: set min,init and max to 0 for

W max, hats of constant tst
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APPENDIX C

Sample Output File

CORSS - Cylinder Optimization of Rings, Skin and Stringers

NASA/MSFC/ED52 - Structural Development Branch

Jeff Finckenor, Sep. 1993, ver. 2.1

FSKTDOC.CIN, NLS MaxQ Loads

************************ INPUT VALUES *****************

FLAGS

IPRINT = 0 No screen output by DOT

METHOD = 1 Modified Method of Feasible Directions

SSP = 3 Optimization history, final calculations and final output

Material Properties

nu = 0.330

E = 1.080E+007

SM = 4.000E+006

rho = 0.iii

Stu = 63000.0

qcy = 53000.0

Poisson's Ratio

Young's Modulus

Shear Modulus

Density
Ultimate Tensile Stress

Yield Compressive Stress

Cylinder Geometry
r = 165.50 Radius

1 = 48.00 Length

fwt = 0.00 Additional Weight

Stringer Parameters

stype = H Hat Stringers

Local Elastic Buckling IS ALLOWED

alp = 15.0 Leg angle

Ii = 0.920 Stringer/skin length

MZs = 1 Stringers external

Ring Parameters

No Rings

Loads

F = 410481.9

M = 9.152E+007

V = 98372.0

Pa = 0.000

Ph = -0.087

sf '= 1.40

sfp = 1.00

Axial Compression

Bending Moment

Shear force

Axial pressure component

Hoop pressure component

Safety factor

Plate buckling safety factor

Design Variables

Var. Minimum Initial Maximum

h 1.0000 1.5000 5.0000

12 1.0000 1.5000 5.0000

tst 0.0250 0.0400 0.2500

Nst 100.0 180.0 360.0

t 0.0250 0.0700 0.2500

W 0.0000 0.0000 0.0000

Name

Stringer height

Top flange length

Stringer thickness

Number of stringers

Skin thickness

Top Flange Thickness

44



OPTIMIZATION HISTORY

h 12 tst Nst t W skin

1 5000 1.5000 0.0400 180 0 0.0700 0 0400 -0.34

5000 1.5000 0.0400 180

5015 1.5000 0 0400 180

5000 1.5015 0

5000 1.5000 0

5000 1.5000 0

5000 1.5000 0

5096 1.5027 0

5251 1.5071 0

5656 1.5187 0

0400 180

0400 180

0400 180

0400 180

0398 185

0396 193

0389 214

0 0.0700 0

0 0.0700 0

0 0.0700 0

0 0.0700 0

2 0.0700 0

0 0 0701 0

1 0 0693 0

3 0 0683 0

9 0 0655 0

0400 -0.34

0400 -0.34

0400 -0.33

0400 -0.34

0400 -0.34

0400 -0.34

0398 -0.32

0396 -0.30

0389 -0.24

6718 1.5489 0

5832 1.5237 0

5848 1.5237 0

5832 1.5252 0

0372 271 4 0

0386 224 2 0

0386 224.2 0

0386 224.2 0

shell stres Cripl Crip2 Wt

0.19 -0.66 -0 71 -0.72

0.19 -0.66 -0

0.19 -0.66 -0

0.19 -0.66 -0

0.19 -0.66 -0

0.19 -0.66 -0

0.19 -0 66 -0

0.16 -0 66 -0

0.12 -0 67 -0

0.03 -0 67 -0

0583 0.0372 -0.04 -0.15 -0

0643 0.0386-0.22 0.00 -0

0643 0.0386 -0.22 -0.00 -0

0643 0.0386 -0.22 -0.00 -0

71 -0.72

71 -0.72

71 -0 72

71 -0 72

71 -0 72

71 -0 72

71 -0 72

72 -0 72

72 -0 73

68 -0.73 -0 74

68 -0.72 -0 73

68 -0.72 -0.73

68 -0.72 -0.73

It

629 0

629 0

629 0

629 0

629 0

629 0

629 0

632 0

637 0

650 0

683 0

656 0

656 1

656 1

(iterations 1 through 6 omitted for brevity)

1.9490 1 4484 0.0313 153.7 0.0649 0.0313

1.9527 1

1.9515 1

1.9556 1

1.9556 1

1.9490 1

1.9527 1

4479 0.0313 153.6 0.0651 0.0313 -0.00 -0.00 -0.60 -0

4442 0.0312 152.5 0.0648 0.0312 0.05 0.01 -0.60 -0

4394 0.0314 152.3 0.0659 0.0314 0.01 0.00 -0.60 -0

4385 0.0314 152.3 0.0660 0.0314 0.00 0.00 -0.60 -0

4484 0.0313 153.7 0.0649 0.0313 0.01 0.01 -0.60 -0

4479 0.0313 153.6 0.0651 0.0313 -0.00 -0.00 -0.60 -0

0.01

66 -0

66 -0

66 -0

66 -0

66 -0

66 -0

0.01 -0.60 -0 66 -0 66

66

66

67

67

66

66

Number of Iterations to Optimize = 7

FSKTDOC.CIN, NLS MaxQ Loads

544 6

544 6

541 7

548 7

549 7

544 7

544 7

STRINGER PROPERTY CALCULATIONS

Area 0 Area 1 Area 2 Area 3 Area 4

0.028783 0.061082 0.045349 0.061082 0.028783 Area

0.015643 0.974200 1.932756 0.974200 0.015643 d

0.000450 0.059506 0.087648 0.059506 0.000450 A*d

0.000007 0.057971 0.169402 0.057971 0.000007 A*d*d

0.000002 0.018103 0.000004 0.018103 0.000002 I

A = 0.225079, ybar = 0.922166, Ix = 0.130166

OVERALL CYLINDER CALCULATIONS

Io = 1429100 Tension Stress = f(Io) = -9211

Cross sectional area = 102.133537

Faxial = f(F, Pa) = 5626.7 Faxialp = 4019.1

Ring Spacing = 48.0000 Stringer Spacing = 6.7519

SKIN BUCKLING STRESS AND MAX SHEAR CALCULATIONS

Scrpl = 14691.7, taucr = 19833.8

bpl = 3.3801, Kc = 4.0000, Ks = 5.4000, Z --_

N q[I]

0 -1.289

Ssk[I]

14617.741

1.0044

G[0]
-0.005
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1 -3.866 14608.922 -0.006

2 -6.437 14582.479 -0.007

3 -8.996 14538.459 -0.010

4 -11.541 14476.931 -0.015

5 -14.066 14397.999 -0.020

(stringers 6 through 37 omitted for brevity)

38 -63.218 4236.436 -0.709

39 -63.166 3804.072 -0.739

40 -63.008 3372.066 -0.768

Max shear stress = 974.4, Max skin stress = 14617.7

Skin Buckling Drivers: Stress = 14617.7, Shear Stress

STRINGER CRIPPLING CALCULATIONS

= 19.9

Crippling: Top Flange = 63000.0, Web = 63000.0

Weighted Average Crippling Stress, 63000.00

STRINGER COLUMN BUCKLING CALCULATIONS

Number of iterations to converge on I, 4

Tension load (adjusted for buckled skin) = -9288.7

Stress Carried in Buckled Skin, Slb = 13222.5

I Y-Stringer Y-skin Stress-str. Stress-skin

0 166.4546 165.5000 21179.3 21091.7

1 166.3161 165.3623 21166.6 21079.0

2 165.9008 164.9494 21128.5 21041.1

3 165.2095 164.2620 21065.0 20978.0

4 164.2431 163.3012 20976.3 20889.9

5 163.0035 162.0687 20862.5 20776.7

Eff. Width

1.2454

1.2458

1.2469

1.2488

1.2514

1.2548

(stringers 6 through 35 omitted for brevity)

36 16.9662 16.8689 7458.7 7449.8

37 10.1985 10.1400 6837.5 6832.2

38 3.4138 3.3942 6214.8 6213.0

I Area sum Area

0 0.043 0.043

0 0.043 0.086

1 0.043 0.129

1 0.043 0.172

2 0.043 0.215

2 0.042 0.257

3 0.043 0.300

3 0.042 0.342

4 0.042 0.384

sum Area*y
7 217

14 273

21 471

28 502

35 642

42 611

49 655

56 525

63 436

2.0986

2.1918

2.2990

sum Area*y*y

1201.257

2369.121

3566.174

4728.941

5913.446

7062.970

8226.756

9355.079

10490.267

skin/str.

stringer
skin

stringer

skin

stringer

skin

stringer

skin

stringer
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4 0.041 0.425 70.169

5 0.041 0.466 76.912

5 0.040 0.507 83.473

11589.726 skin

12688.838 stringer

13752.177 skin

(stringers 6 through 25 omitted for brevity)

26 0.000

26 0.000

27 -0.001

27 -0.001

28 -0.001

28 -0.001

29 -0.000

1 420

I 420

1 420

1 419

1 418

1 417

1 417

213.621

213.637

213.581

213.535

213.460

213.418

213.391

32558.371 stringer

32559.602 skin

32555.406 stringer

32551.990 skin

32546.814 stringer

32543.922 skin

32542.178 stringer

Ybar = 2.119, Cylinder I = 1396105.6, Anew = 100.7

Euler Column Buckling = 21194.9

Applied Stress = 21089.1

Effective skin width on stringer with max stress = 4.981510

Stringer+Skin I = 0.2512, radius of gyration = 0.6769

GENERAL CYLINDER BUCKLING CALCULATIONS

Ex = 1146387.8750 Ey = 786363.3125 Exy = 259499.9063

Dx = 536564.0000 Dy = 275.8633 Dxy = 167651.5781

Cx = 343681.9688 Cy = 1.08E-034 Cxy = 2.554E-005

Gxy = 263431.7188 Kxy = 2.554E-005

Critical Line Load, m=l, n=13, Ncr=4557.328125

A = i 6536.1563 2688.4309 198.9806 i

l 2688.4309 5980.3813 373.2249 i

i 198.9806 373.2249 42.9972 i

determinant of A(3x3) = 6.21996E+008

determinant of A(2x2) = 3.1861E+007

Critical line load is Ncr= 4557.328125

Knockdown Adjusted Line Load is 4674.877441

at axial waves m = I, and hoop waves n = 13

gammaF = 0.348735, gammaM = 0.471615

Critical Pressure

A = I 56163.5859 15096.5742 198.9806 I

I 15096.5742 154121.9531 2095.8013 I

I 198.9806 2095.8013 188.7229 I

determinant of A(3x3) = 1.35038E+012

determinant of A(2x2) = 8.42813E+009

Critical Pressure = 3.73 with 73 circumferential waves

Critical crushing pressure Pcr = 3.731967

Column Buckling provides support above General Cylinder Buckling
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VON MISES STRESS CHECK

Point of Max Compression:

Sx = 21089.1, Sy = 310.7,

S1 = 21089.2, $2 = 310.7,

Point of Max Shear:

Sx = 5705.9, Sy = 310.7,

Sl = 5876.4, S2 = 140.1,

Point of Max Tension:

Sx = -9288.7, Sy = 310.7,

S1 = 310.7, S2 = -9288.8,

tauxy = -19.9
Von Mises Stress =

tauxy = 974.4
Von Mises Stress =

tauxy = -19.9

Von Mises Stress =

20935.

5807.6

9448.0

Cylinder Weight = 544.2

(Skin: 359.5, Stringers: 184.7, Rings: 0.0, Flanges: 0.0)

h = 1.9484,

12 = 1.4495,

tst = 0.0313,

Nst = 154.0,

t = 0.0649,

W = 0.0313,

Stringer Height

Hat stringer top flange length

Hat stringer thickness

Number of Stringers, b = 6.7519

Skin Thickness

Hat stringer top flange thickness

Stringer: I = 0.130166, J = 0.282368, Z = 0.954607, A = 0.225079

End Ring I should be at least 21.14

End Ring Area should be at least 0.00113895*(r+Z)

G[] value

Skin: (Shear ratio)**2 + Stress ratio = 0.99497 < 1 -0.00503

Applied Column Stress (SF = 1.40)

Critical Stringer Crippling Stress

Critical Column Stress

= 21089.1

= 63000.0

= 21194.9

-0.66525

-0.00499

Applied Yon Mises Stress (SF = 1.40)

Yield Compressive Stress

= 20935.6

= 53000.0 -0.60499

General Cylinder Buckling controlled by Critical Column Buckling

Applied Crushing Hoop Pressure (SF = 1.40) = 0.122

Critical Buckling Pressure = 3.732

Hoop waves, n = 73
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APPENDIX D

Program Listing

/* C language include files for standard function definitions */

#include <stdio.h>

#include <stdlib.h>

#include <math.h>

#include <string.h>

/* define pi for use in the program */

#define pi 3.141592654

/* Variable Structures

Many often passed values are grouped into structures of related variables

stiffness - the smeared orthotropic cylinder properties used in General

Cylinder Buckling Calculations

Ex, Ey, Exy - smeared extensional stiffnesses

Gxy - smeared shear stiffness

Cx, Cy, Cxy, Kxy - smeared coupling constants

Dx, Dy, Dxy - smeared bending stiffnesses

material - the material properties from the input file

E - Young's Modulus

nu - poisson's ratio

rho - density

Scy - compressive yield strength

G - Shear Modulus

Stu - tensile ultimate strength

load - the loading parameters from the input file

F - axial force, positive is compressive

M - bending moment

Pa - axial pressure (i.e. ullage), internal is positive

Ph - hoop pressure (i.e. ullage+head), internal is positive

sf - safety factor to be applied to loads

sfp - skin buckling safety factor, assumed 1.0<=sfp<=sf

V - shear force

stringer - the variables that define the stringers

A - cross sectional area

I - Moment of Inertia about the neutral axis parallel to the skin

J - The polar moment of inertia, Ix+Iy

N - the number of stringers (optimized design variable)

Z - neutral axis distance from the skin

alp - web angle

ii - hats: stringer to skin length, 2/hat; I: bottom flange thickness

MZs - Z multiplier, 1 for external stringers, -i for internal

h - stringer height (optimized design variable)

12 - hat: top flange width, I: top flange thickness (design variable)

t - skin thickness (optimized design variable)

W - hat: top flange thickness, I: stringer width (design variable)

b - stringer spacing

la projected length of the hat stringer web on the skin
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stype - stringer type identifier, H for hats, I for I's

ring - ring parameters from the input file

A - cross sectional area

I - moment of inertia about the neutral axis parallel to the skin

J - Polar Moment of Inertia, Ix+Iy

N - number of intermediate rings (not end rings)

Z - neutral axis distance from the skin, + for external

d - ring spacing

cylinder - cylinder geometry definitions

fwt - additional weight, not optimized

1 - length of cylinder

r - radius of cylinder

t - skin thickness (optimized design variable)

struct stiffness{float Ex, Ey, Exy, Gxy, Dx, Dy, Dxy, Cx, Cy, Cxy, Kxy; };

struct material {float E, nu, rho, Scy, G, Stu; };

struct load {float F, M, Pa, Ph, sf, sfp, V; };

struct stringer {float A, I, J, N, Z, alp, ii, MZs, h, 12, t, W, b, la;

char stype;);

struct ring {float A, I, J, N, Z, d; };

struct cylinder {float fwt, i, r, t; };

/* MAIN starts the program, initialized the variables and calls the

optimization routine

called from: DOS command line

calls : readinput, pinput, initDVs, CALLeval, and corsstol

returns

argc, argv - the number and array of command line parameters,

G - array of constraint values,

hap - position of stringer height in X

i - index,

in, out - handles for the input and output files,

IPRINT - DOT output flag,

12ap - position of top flange length in X

LEB - Y/N flag to allow local elastic buckling of the stringer segments

METHOD - DOT method flag,

mflag - flag to control search of I-coupled buckling

NCON - number of constraints,

NDV - number of design variables,

Nstap - position of number of stringers in X

OBJ - weight,

SSP - CORSS output flag

tap - position of skin thickness in X

Title - title of run,

Tol - array of tolerances associated with X

tstap - position of stringer thickness in X

Wap - position of I width: H top flange thickness in X

X, XL, XU - array of design variables, and lower and upper limits,

Xinit - array of initial variables for normalizing,
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/* comlineerr is called if there is an error with the command line. It

prints the correct usage message and exits the program

called from: MAIN

calls

returns

void comlineerr();

/* initDVs controls the removal of variables from the design variable arrays

called from: MAIN

calls : Xadust

returns : modified X,XL,XU,Xinit arrays, and hap, 12ap, tstap,Nstap,tap,Wap

indices and the new number of design variables

i - incrementing index

NDV - number of design variables

pos - current X array position

long int initDVs(float XL[], float X[], float XU[], int *hap, int *12ap,

int *tstap, int *Nstap, int *tap, int *Wap, float Xinit[],

long int ndv);

/* Xadjust manipulates the design variable arrays so that only the needed

design variables are iterated upon

called from: initDVs

calls

returns : next available design variable array position

k - index

int Xadjust(int newpos, int pos, long int *NDV, float X[], float Xinit[],

float XL[], float XU[]);

/* DOT is the numerical optimizer program

called from: ctopt

returns : new values for X

void fortran DOT(long int *INFO, long int *METHOD, long int *IPRINT,

long int *NDV, long int *NCON, float X[],

float XL[], float XU[], float *OBJ,

long int *MINMAX, float G[], float RPRM[],

long int IPRM[], float WK[], long int *NRWK,

long int IWK[], long int *NRIWK);
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/* CALLeval uses the X array and the 'ap' variable to prepare the variables

for the analysis of EVAL

calls : eval

returns :

***************************************************************************

void CALLeval(struct stringer S, struct ring R, struct material M,

struct load L, struct cylinder C, float G[], float X[],

float Xinit[], float *OBJ, FILE *out, int SSP, int hap, int 12ap,

int Nstap, int tap, int tstap, int Wap, int mflag, char LEB);

/* ctopt controls the optimization calls to eval and DOT

called from: MAIN

calls : CALLeval and DOT

returns

INFO - DOT completion flag

IPRM, IWK, RPRM, WK - DOT working arrays

MINMAX - DOT minimization/maximization flag

NRIWK, NRWK - IWK and WK sizes

***************************************************************************

void ctopt(int SSP, FILE *out, float X[], float Xinit[], int hap,

int 12ap, int tstap, int Nstap, int tap, int Wap, struct stringer S,

struct ring R, struct material M, struct load L, struct cylinder C,

float G[], float *OBJ, long int *METHOD, long int *IPRINT,

long int *NDV, long int *NCON, float XL[], float XU[], int mflag,

char LEB);

/* EVAL is the function that controls the analysis

called from: CALLeval

calls : stringer, skinbuck, getScrip, colstress, GCBcalc, stresscheck,

and finalout

returns : G array values

Anew - cylinder area with buckled skin,

Faxial, Faxialp - axial stress from F and Pa only, w/ sf and sfp

gamF - general cylinder buckling knockdown factor for axial loads

gamM - general cylinder buckling knockdown factor for bending

GC_ - flag for identifying the shell buckling failure mode

i - index

Io - cylinder total moment of inertia

mdrv - the critical wavelength value for I-coupled buckling

mgcb, ngcb - half axial and hoop waves for Nx

N - knockdown adjusted applied line load

Nx - critical general cylinder buckling line loads

ncr - hoop waves for Pcr

Pcr- critical general cylinder buckling pressure

rasl, risl - radius average skin line, inner skin line

St - applied tension stress

Scol, Scrstcol - applied and critical stringer/column stress

Scripl/2, - crippling and local buckling critical stresses
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Scrips - weighted average of inelastic crippling stress

Scrpl, Sskbd - skin stresses: crit. skin buckling, skin buck. driver

Ssk - maximum stress in the skin

tau, taucr, tauskbd, tau0 - shear stresses: maximum, skin buckling

critical,skin buckling driver, minimum

theta, dtheta - angle and angle between stringers

Yst, Ysk - stringer and skin y distances from cylinder center

void eval(struct stringer S, struct ring R, struct material M, struct load L,

struct cylinder C, float G[], float *OBJ, FILE *out, int SSP,

int mflag, char LEB);

/* STRINGER calculates the stringer cross sectional properties

called from: eval

calls : stringerP

returns : S.A for stresscheck,

S.A, S.la, S.I, and S.Z for colstress,

S.A, S.la for skinbuck

S.A, S.I, S.Z, S.J for GCBcalc

must be called before stresscheck, colstress, GCBcalc, or skinbuck

"a - array of segment areas

ad - (segment areas)*(segment distance from skin)

add - (segment areas)*(segment distance from skin)**2

alpha - web angle in radians

d - array of segment distances from the skin

ha - hat stringer web slant height

i - index

I - array of segment moments of inertia

ix, iy - stringer moments of inertia parallel and perpendicular to

the skin, respectively

na - number of stringer segments

sumad, sumadd, sumi - summations of the ad, add, and I arrays

xbar,ybar - stringer neutral axis distances from the skin and the

side of the stringer, respectively

void stringer(struct stringer *S, struct cylinder C, FILE *out, int SSP);

/* STRINGERP prints section information to the output file

called from: stringer

calls

returns

void stringerP(int na, float a[], float d[], float ad[], float add[],

float I[], float A, float bar, float i, char line[],

FILE *out);
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/* SKINBUCK calculates the skin buckling constraint

called from: eval

calls : Ks, Kc

returns : G[0] for DOT

Scrpl, Sskbd, tauskbd, taucr for colstress

Stsk, tau, tau0 for stresscheck

must be called before stresscheck, and colstress

alpha, K, K1 - pressure stabilization factors

bpl - distance between fixed points on the skin

gO, g0max - design ratio, and maximum design ratio

i - index

Kcr, Ksh - axial and shear plate buckling constants

q, qmax - shear flow between stringers and maximum shear flow

Ssk - stress in the skin

Z - non dimensional parameter for calculating Kcr and Ksh

float skinbuck(struct stringer S, float d, struct material M,

struct load L, struct cylinder C, float Faxialp, float Io, FILE *out,

float *Scrpl, float *Sskbd, int SSP, float *Stsk, float *tau,

float *tau0, float *taucr, float *tauskbd, float Ysk[], float Yst[]);

/* Kc interpolates between curves for the skin buckling constants

called from: skinbuck

calls : Kc## functions

returns : skin buckling constant

Kc## functions return the skin buckling ratio for the given r/t ratio

Ks returns the shear skin buckling constant

float Kc(float Z, float r, float t);

float Kcl00(float Z);

float Kc300(float Z);

float Kc500(float Z);

float Kc1000(float Z);

float Kcl500(float Z);

float Ks(float Z);

/* GETSCRIP calculates elastic buckling, if needed, and inelastic crippling

called from: eval

calls : findICBuck

returns : Scrip for colstress,

and i or 2 critical constraint values for DOT

must be called before colstress

alpha - web angle in radians

m - I stringer coupled buckling wave number
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S1 - crippling stress, or I flange elastic buckling stress, or

hat flange elastic buckling stress

S2 - I coupled buckling stress, hat web local buckling (if needed)

$3 - flange crippling stress

$4 - web crippling stress

float getScrip(struct stringer S, struct material M, FILE *out,

float *Scripl, float *Scrip2, float *ScripS, int SSP, int *mdrv,

float I, int mflag, char LEB);

/* findICBuck controls the search for the lowest coupled buckling stress

called from: getScrip

calls : secant

returns : critical stress with the associated number of waves

i - index

m - number of waves

S - critical stress variable

Sdrv - lowest critical stress

Slast - critical stress from the previous iteration

*************************************************************************

float findICBuc(int mflag, int *mdrv, float i, float tst, float nu, float h,

float 12, float W, float E, int SSP, FILE *out);

/* secant performs the secant method root solver

called from: findICBuck

calls : G6eqn

returns : critical stress from a given number of waves

count - iteration limiter

Fj, Fi - function values on different iterations

hold - used to switch Si and Sj

i - index

Smin, Smax - bounds of critical stress range

Si, Sj - stress values on different iterations

float secant(int m, float I, float tst, float nu, float h, float 12, float W,

float E);

/* G6eqn is the defining equation for I coupled buckling

called from: secant

calls

returns : value of the function
WWW.WWWWW._W_WWWWWWW*W*WWW**WW**_WW*W*_***WW*******WW***WW**WW**WWWWWW**/

float G6eqn(float S, float m, float i, float tst, float nu, float h,

float 12, float W, float E);

/* domainexit exits the program when to prevent a sqrt error which comes

from having a negative web length

called from: getScrip
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calls

returns : ends the program

void domainexit(float 12, float ii, float h, FILE *out);

/* COLSTRESS calculates the stress in the stringer and does the stress

analysis if the skin buckles and redistributes the load

called from: eval

calls : loopI

returns : column buckling constraint value, adjusted cylinder area and

tension stress, stress in the column, and the column buckling stress

must be called after stringer, skinbuck, and getScrip

must be called befor stresscheck

be - effective skin width

Ise - skin + stringer moment of inertia

radg - skin + stringer radius of gyration

ScrstcolJE - critical Johnson-Euler column stress

tmp- effective width temporary location

We0 - minimum effective skin width

float colstress(float *Anew, struct stringer S, float d, float E,

struct load L, struct cylinder C, float Faxial, float Io, FILE *out,

float *St, float *Scol, float Scrip, float Scrpl, float *Scrstcol,

float Sskbd, int SSP, float taucr, float tauskbd, float Ysk[],

float Yst[]);

/* LOOPI controls the iterations for calculating the cylinder properties

with the skin buckled

called from: colstress

calls : newI

returns : stringer column stress, new cross sectional area and tension

stress, minimum effective skin width

Acyl - cylinder cross sectional area

count - iteration limiter

I - cylinder moment of inertia

Ioid - last iterations moment of inertia

ybar distance of cylinder neutral axis from the centerline

*************************************************************************

float loopI(float *Anew, struct stringer S, float M, float sf, float E,

struct cylinder C, float Faxial, float Io, FILE *out, float *St,

float Scrpl, int SSP, float *We0, float Ysk[], float Yst[]);

/* NEWI calculates the new cylinder moment of inertia and neutral axis

called from: loopl

calls

returns : adjusted area, moment of inertia and neutral axis location

of the cylinder, and the minimum effective skin width

A - ineffective skin area
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i - index

N - 1/2 number of stringers (symmetric)

Slb - stress carried in buckled skin

Ssk, Sst - stress in individual skin segments and stringers

sumA, sumAy, sumAyy - summations of area, area*distance from

neutral axis, and area*distance**2

tmp- temporary effective skin width location

We - effective skin widths

************************************************************************/

void newI(float Acyl, float *Anew, struct stringer S, float M, float sf,

float t, float E, float Faxial, float *I, float Io, FILE *out,

float Scrpl, int SSP, float *We0, float *ybar, float Ysk[],

float Yst[]);

/* STRESSCHECK checks the Von Mises Stress at three locations

called from: eval

calls : VMStress

returns : highest Von Mises stress

must be called after stringer, colstress, and skinbuck

risl - radius at the inner skin line

VMSA, VMSB, VMSC - Von Mises stress at the three locations

float stresscheck(float Anew, float As, float Ns, float Ph, float r, float t,

float Faxial, FILE *out, float St, float Scol, int SSP, float tau,

float tau0, float sf);

/* VMSStress calculates Von Mises Stress given Sx, Sy, and Tauxy

called from: stresscheck

calls

returns : Von Mises stress

SI, $2 plane stress principle stresses

VMS - Von Mises stress

float VMStress(char loc[], FILE *out, int SSP, float Sx, float Sy,

float tauxy);

/* GCBcalc controls the general cylinder buckling analysis

called from: eval

calls : getstiffnesses, gencyl, gammaM, gammaF, and Pcrcalc

returns : the shell buckling constraint, the number of axial and hoop

waves in the buckled mode, the critical line load and

pressure, the adjusted line load, the number of hoop

waves from pressure buckling, the shell buckling flag,
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and the knockdown factors

egdck - structure of smeared orthotropic shell properties

G1 - temporary constraint value

float GCBcalc(struct ring R, struct stringer S, struct material M,

struct cylinder C, struct load L, float G[], FILE *out, int SSP,

int *mgcb, int *ngcb, float *Nx, float *Pcr, float *N,

float Io, float Faxial, int *ncr, char *GCB, float *gamF,

float *gamM);

/* GENCYL calculates the general cylinder buckling critical load

called from: GCBcalc

calls : getA

returns : critical line load and the hoop and axial waves

m, n - working values of axial and hoop waves

mm, nm - tracks minimum numbers of waves

Nm - tracks minimum line load

Nmt - temporary critical line load

Nold - last iterations line load

void gencyl(float i, float Nr, float r, struct stiffness egdck, int *mmin,

int *nmin, float *Nx, FILE *out, int SSP);

/* Pcrcalc calculates the critical pressure buckling load

called from: GCBcalc

calls : getA

returns : critical pressure and number of hoop waves

n - working number of hoop waves

P - working pressure

Pcr - critical pressure

Pold - last iterations critical pressure

float Pcrcalc(struct stiffness egdck, float r, float i, int *ncr, FILE *out,

int SSP);

/* GETA calculates det(A[3] [3])/det(A[2] [2])

called from: gencyl, Pcrcalc

calls

returns : result from division of the determinates

AII..A33 - A array locations

detA3x3 - determinate of the full three by three array

detA2x2 - determinate of [All AI2 / A21 A22] only

float getA(struct stiffness ES, float r, float i, int m, int n, FILE *out,

int SSP);

/* GETSTIFFNESSES calculates the smeared orthotropic shell properties

called from: GCBcalc

calls
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returns : the smeared orthotropic cylinder properties

Er, Es - Young's Modulus of the rings and stringers

Gr, Gs - Shear Modulus of the rings and stringers

*******************WW*W***W**W***WWWW**W***WW*W****W********************/

void getstiffnesses(struct ring R, struct stringer S, struct material M,

struct cylinder C, struct stiffness *egdck, FILE *out,

int SSP);

/* gammaF and gammaM calculate the axial and bending knockdown factors

called from: GCBcalc

calls

returns : the knockdown factor

************W*WWWWW***W*WW*W*****WWW*WWWW**W**W*W*WW**WW*W**************/

float gammaF(struct stiffness ES, float r);

float gammaM(struct stiffness ES, float r);

/* finalout prints the last set of output data

called from: eval

calls

returns

*************************************************************************

void finalout(struct ring R, struct stringer S, struct material M,

struct load L, struct cylinder C, float G[], float gamF, float gamM,

char GCB, int mgcb, float N, int ncr, int ngcb, float Nx, float obj,

FILE *out, float Pcrush, float Scol, float Scripl, float Scrip2,

float Scrstcol, char LEB, int mdrv, float Io, float Faxial);

/* cinput, finput, iinput read a character, a float and an integer,

respectively from the input file then skips to the next line

called from: readinput

calls

returns : a character, float, or integer

char cinput(FILE *infile);

float finput(FILE *infile);

int iinput(FILE *infile);

/* pinput, repeats the information from the input file so that input and

output are always kept together

called from: main

calls

returns

void pinput(struct stringer S, struct ring R, struct material M,
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struct load L, struct cylinder C, long int IPRINT, long int METHOD,

FILE *out, int SSP, float X[], float XL[], float XU[], int mflag,

char LEB);

/* readinput, reads the information in the input file

called from: main

calls

returns : all input information

void readinput(char Title[], FILE *in, long int *IPRINT, long int *METHOD,

int *SSP, struct material *M, struct cylinder *C, struct stringer *S,

struct ring *R, struct load *L, float XL[], float X[], float XU[],

float Tol[], int *mflag, char *LEB);

void main(argc, argv)

int argc;

char *argv[];

{

FILE *in,*out;

long int NDV, NCON, IPRINT, METHOD;

float X[12],XL[6],XU[6],G[5],OBJ;

float Xinit[12],Tol[6];

char Title[80],LEB;

int i,SSP,hap, 12ap, tstap,Nstap,tap,Wap,mflag;

struct material M;

struct load L;

struct stringer S;

struct ring R;

struct cylinder C;

printf('\nmain\n');

NDV = 6; NCON = 5;

if ( (in = fopen(argv[l],"rt')) == NULL)

{

printf('\ncan't open input file, First parameter must be input file');

comlineerr();

}

if (strcmp(argv[l],argv[2]) == 0)

{

printf('\ninput filename is the same as output filename');

comlineerr();

}

if ( (out = fopen(argv[2],'wt')) == NULL)

{

printf('\ncan't open output file, Second param, must be output file");

comlineerr();
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}

fprintf(out,'CORSS - Cylinder Optimization of Rings, Skin and Stringe');

fprintf(out,'rs\n NASA/MSFC/ED52 Structural Development Branch');

fprintf(out,'\n Jeff Finckenor, Sep. 1993, ver. 2.1\n");

printf('CORSS - Cylinder Optimization of Rings, Skin and Stringe');

printf('rs\n NASA/MSFC/ED52 - Structural Development Branch');

printf('\n Jeff Finckenor, Sep. 1993, vet. 2.1\nkn');

readinput(Tit_e_in_&IPRINT_&METH_D_&SSP_&M_&C_&S_&R_&L_xL_x_xU_T___&mf_ag_&LEB);

fclose(in);

fprintf(out,'kn%s",Title);

if (0 == R.N) { R.A = .001; R.I = .001; R.Z = .001; R.J = .001; }

pinput(S,R,M,L,C,IPRINT,METHOD,out,SSP,X,XL,XU,mflag,LEB);

if ( (S.stype != 'H °) && (S.stype l= 'I') )

{

printf("kn\n%c is not a valid stringer typekakaka',S.stype);

exit(4);

}

if (('H'==S.stype) && ('N'!=LEB)) NCON--;

NDV = initDVs(XL,X,XU,&hap,&12ap,&tstap,&Nstap,&tap,&Wap,Xinit,NDV);

if (NDV != 0)

ctopt(SSP,out,X,Xinit,hap, 12ap, tstap, Nstap,tap,Wap,S,R,M,L,C,G,

&OBJ,&METHOD,&IPRINT,&NDV,&NCON, XL,XU,mflag,LEB);

fprintf(out,"\n");

fputs(Title,out);

if ( (SSP == I) II (SSP == 3) ) SSP = 4; else SSP = 5;

CALLevaI(S,R,M,L,C,G,X,Xinit,&OBJ,out,SSP,hap, 12ap,Nstap, tap,

tstap,Wap,mflag,LEB);

for (i=0; i<NCON; i++)

if (G[i]>0)

{

fprintf(out,'\nkn** WARNING G[%d] (=%7.5f>0) IS NOT ",i,G[i]);

fprintf(out,"SATISFIED, THIS IS NOT A VALID SOLUTION[');

}
if ( (Tol[0] !=0) II (Tol[l]!=0) II (Tol[2]!=0) li (Tol[3]!=0) li

(Tol[4]!=0) II (Tol[5]!=0))

{
for (i=0; i<NDV; i++)

{ XL[i] *= Xinit[i]; XU[i] *= Xinit[i]; X[i] *= Xinit[i]; }

corsstoI(S,R,M,L,C,hap, IPRINT, 12ap,METHOD,NCON, NDV, R.N, Nstap,out,

SSP, tap,Tol,tstap,Wap,X,XL, XU,mflag,LEB);

/* corsstol must define IPRM, IWK, MINMAX, NRIWK, NRWK, RPRM, WK */

}

fclose(out);

printf("kakaka");
end main */

long int initDVs(float XL[], float X[], float XU[], int *hap, int *12ap,

int *tstap, int *Nstap, int *tap, int *Wap, float Xinit[],
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long int ndv)

int i;

long int NDV = ndv;

int pos = 0;

if ( (XL[pos] == X[pos]) && (X[pos] == XU[pos]) )

*hap = Xadjust(6,pos,&NDV, X,Xinit,XL,XU);

else *hap = pos++;

if ( (XL[pos] == X[pos]) && (X[pos] == XU[pos]) )

*12ap = Xadjust(7,pos,&NDV, X,Xinit,XL,XU);

else *12ap = pos++;

if ( (XL[pos] == X[pos]) && (X[pos] == XU[pos]) )

*tstap = Xadjust(8,pos,&NDV, X,Xinit,XL,XU);

else *tstap = pos++;

if ( (XL[pos]==X[pos]) && (X[pos]==XU[pos]))

*Nstap = Xadjust(9,pos,&NDV, X,Xinit,XL,XU);

else *Nstap = pos++;

if ( (XL[pos]==X[pos]) && (X[pos]==XU[pos]))

*tap = Xadjust(10,pos,&NDV, X, Xinit,XL,XU);

else *tap = pos++;

if ((0==XL[pos]) && (0==X[pos]) && (0==XU[pos]))

{ *Wap = *tstap; NDV--; }

else

if ( (XL[pos]==X[pos]) && (X[pos]==XU[pos]))

*Wap = Xadjust(ll,pos,&NDV, X,Xinit,XL,XU);

else *Wap = pos;

for (i=0; i<NDV; i++)

{

Xinit[i] = X[i];

XL[i] = XL[i]/Xinit[i];

XU[i] = XU[i]/Xinit[i];

x[i] = 1.0;

}

return (NDV);

************************************** end initDVs **********/

void comlineerr()

{

printf('\nUsage: C:\>CORSS

fcloseall();

exit(l);

}

file.in file.out");

int Xadjust(int newpos, int pos, long int *NDV, float X[], float Xinit[],

float XL[], float XU[])

{

int k;

X[newpos] = X[pos];

Xinit[newpos] = i.;

for (k=pos; k<(*NDV-I); k++) { XL[k] = XL[k+I]; X[k] = X[k+l]; XU[k]=XU[k+I]; }

*NDV-=I;

return(newpos);
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void ctopt(int SSP, FILE *out, float X[], float Xinit[], int hap,

int 12ap, int tstap, int Nstap, int tap, int Wap, struct stringer S,

struct ring R, struct material M, struct load L, struct cylinder C,

float G[], float *OBJ, long int *METHOD, long int *IPRINT,

long int *NDV, long int *NCON, float XL[], float XU[], int mflag,

char LEB)

long int INFO, IPRM[20],IWK[II0],j,MINMAX,NRIWK,NRWK;

float RPRM[20],WK[450];

int iter, i;

for (j=0; j<20; j++)

{

RPRM[j] = 0.0;

IPRM[j] = 0;

}

NRWK = 450; /* make the dimension of IWK and WK the same */

NRIWK = 110;

MINMAX = -I;

INFO = 0;

if ( (SSP == 2) I f (SSP == 3) )

{

fprintf(out,'\n\n OPTIMIZATION HISTORYknkn');

fprintf(out,'h 12 tst Nst t W skin shell ");

fprintf(out,'stres Cripl Crip2 Wt It');

}

iter = 0;

do

{

if (IPRM[18]!= -I)

{

printf('\nIteration #%i',IPRM[18]);

iter= (int) IPRM[18];

}
if ( (SSP ==2) II (SSP ==3) )

{

fprintf(out,'kn%5.4f %5.4f %5.4f %5.1f %5.4f %5.4f ",

X[hap]*Xinit[hap], X[12ap]*Xinit[12ap],

X[tstap]*Xinit[tstap], X[Nstap]*Xinit[Nstap],

X[tap]*Xinit[tap], X[Wap]*Xinit[Wap]);

fflush(out);

)

CALLeval(S,R,M,L,C,G,X, Xinit,OBJ,out,SSP,hap, 12ap,Nstap,tap,tstap,Wap,

mflag,LEB);

for (i=0; i<(*NCON); i++) G[i]+=.005;

DOT(&INFO,METHOD, IPRINT,NDV, NCON, X, XL,XU,OBJ,&MINMAX,G, RPRM, IPRM,

WK,&NRWK, IWK,&NRIWK);

printf(" %3.1f %7.4f %7.4f %7.4f %7.4f %7.4f',
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*OBJ,G[0],G[I],G[2],G[3],G[4]);

if ( (SSP == 2) II (SSP == 3) )

{

fprintf(out,'%5.2f %5.2f %5.2f %5.2f %5.2f',G[0],G[I],G[2],G[3],G[4]);

fprintf(out," %4.0f %d',*OBJ, iter);

}
} while iINFO!=0); /*** end optimization (INFO=0) loop ***/

fprintf(out,=\n\nNumber of Iterations to Optimize = %d",iter);

if (iter > 20) fprintf(out," -- WARNING -- Solution may not have converged.');

********************************************** end ctopt ****/

void CALLeval(struct stringer S, struct ring R, struct material M,

struct load L, struct cylinder C, float G[], float X[],

float Xinit[], float *OBJ, FILE *out, int SSP, int hap, int 12ap,

int Nstap, int tap, int tstap, int Wap, int mflag, char LEB)

S.h = X[hap]*Xinit[hap];

S.12 = X[12ap]*Xinit[12ap];

S.N = X[Nstap]*Xinit[Nstap];

S.t = X[tstap]*Xinit[tstap];

C.t = X[tap]*Xinit[tap];

S.W = X[Wap]*Xinit[Wap];

evaI(S,R,M,L,C,G, OBJ,out,SSP,mflag,LEB);

****************************************** end CALLeval ******/

void eval(struct stringer S, struct ring R, struct material M, struct load L,

struct cylinder C, float G[], float *OBJ, FILE *out, int SSP,

int mflag, char LEB)

{

float Anew, dtheta, Faxial, Faxialp, Io, N, Nx, Pcr, St,

Scol, Scripl, Scrip2, ScripS, Scrpl, Scrstcol,

Ssk, Sskbd, tau, tau0, taucr, tauskbd, theta, Ysk[541], Yst[1081],

gamF, gamM;

int i, mgcb, ncr, ngcb, mdrv;

char GCB;

putchar('kn');

putchar('E');

if (S.N>I080)

{

printf('\nknNumber of stringers exceeds 1080, ");

printf('Number of stringers set to 1080");

S.N = 1080;

if (4 == SSP)

{

fprintf(out,'\nknNumber of stringers exceeds 1080, ");

fprintf(out,"Number of stringers set to 1080");
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)
if (SSP == 4) fprintf(out,'\n\nSTRINGER PROPERTY CALCULATIONS');

stringer(&S,C,out,SSP);

S.Z *= S.MZs;

R.d = C.I/(R.N+I);

S.b = 2*pi*C.r/S.N;

Anew = 2*pi*C.r*C.t + S.A*S.N;

if (L.Pa<0)

{
Faxial = (L.F-L.Pa*pi*C.r*C.r)*L.sf/Anew;

Fax\alp = (L.F-L.Pa*pi*C.r*C.r)*L.sfp/Anew;

}

else

{

Faxial = (L.F*L.sf-L.Pa*pi*C.r*C.r)/Anew;

Fax\alp = (L.F*L.sfp-L.Pa*pi*C.r*C.r)/Anew;

}

Io = pi*C.t*C.r*C.r*C.r + S.N*S.I;

theta = 0; dtheta = 2*pi/S.N;

for (i=0; i<(S.N/2+I); i++)

{

Yst[i] = (C.r+S.Z)*cos(theta);

Ysk[i] = C.r*cos(theta);

Io += 2*S.A*Yst[i]*Yst[i];

theta+=dtheta;

}
St =.-L.M*L.sf*C.r/Io + Faxial; /* tension stress */

if (SSP == 4)

{

fprintf(out,'inknOVERALL CYLINDER CALCULATIONS');

fprintf(out,'\n\nIo = %-22.0f Tension Stress = f(Io) = %2.0f',Io,St);

fprintf(out,"knCross sectional area = %f",Anew);

fprintf(out,"\nFaxial = f(F, Pa) = %8.1f Fax\alp = %8.1f',Faxial,Faxialp);

fprintf(out,"knRing Spacing = %-12.4f Stringer Spacing = %7.4f",R.d,S.b);

fprintf(out,'knknSKIN BUCKLING STRESS AND MAX SHEAR CALCULATIONS');

}
G[0] = skinbuck(S,R.d,M,L,C,Faxialp, Io, out,&Scrpl,&Sskbd, SSP,&Ssk,&tau,&tau0,

&taucr,&tauskbd,Ysk,Yst);

if (SSP == 4) fprintf(out,'\n\nSTRINGER CRIPPLING CALCULATIONSkn");

getScrip(S,M, out,&Scripl,&Scrip2,&ScripS,SSP,&mdrv, C.l,mflag,LEB);

if (SSP == 4) fprintf(out,'knknSTRINGER COLUMN BUCKLING CALCULATIONS');

G[I] = colstress(&Anew, S,R.d,M.E,L,C,Faxial,Io,out,&St,&Scol,ScripS,Scrpl,

&Scrstcol,Sskbd,SSP, taucr, tauskbd,Ysk,Yst);

GCB = 'N';

G[3] = Scol/Scripl -I.;

G[4] = Scol/Scrip2 -I.;

if (Scol<0)

{
fprintf(out,'kn\n\nWhole Cylinder is in Tension due to pressure, this");

fprintf(out," is not a buckling problem.\n\n");

exit(l);

}
if (SSP == 4) fprintf(out,"\n\nGENERAL CYLINDER BUCKLING CALCULATIONS');

G[I] = GCBcalc(R,S,M,C,L,G,out,SSP,&mgcb,&ngcb,&Nx,&Pcr,&N, Io,Faxial,&ncr,

&GCB,&gamF,&gamM);

if (4 == SSP) fprintf(out,'knknVON MISES STRESS CHECKkn");
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G[2]=stresscheck(Anew, S.A,S.N,L.Ph,C.r,C.t,Faxial,out,St,Sc°l,SSP,tau'tau0'

L.sf)/M.Scy - i.;

*OBJ= (pi*2*C.r*C°t*C.l +S.A*C.I*S.N +R.A*R.N*2*pi*(C.r+R.Z))*M.rho +C.fwt;

if ( (SSP == 4) I I (SSP == 5) )

finalout(R,S,M,L,C,G,gamF,gamM, GCB,mgcb,N,ncr,ngcb, Nx,*OBJ,°ut,Pcr,Sc°l'

Scripl,Scrip2,Scrstcol,LEB,mdrv, Io,Faxial);

} *********************************************************** end eval */

int iinput(FILE *infile)

{
char hold[80]; int i = 0;

fscanf(infile," %d',&i); fgets(hold, 80,infile); return(i);

} ******************************************************* end iinput
*/

float finput(FILE *infile)

{
char hold[80]; float f = 0;

fscanf(infile," %f',&f); fgets(hold, 80,infile); return(f);

} ******************************************************** end finput
**

char cinput(FILE *infile)

(
char hold[80]; char c = '0';

fscanf(infile," %Is',&c); fgets(hold, 80,infile); return(c);

} ****************************************************** end cinput
*/

void readinput(char Title[], FILE *in, long int *IPRINT, long int *METHOD,

int *SSP, struct material *M, struct cylinder *C, struct stringer *S,

struct ring mR, struct load *L, float XL[], float X[], float XU[],

float Tol[], int *mflag, char *LEB)

fgets(Title,80,in);

*IPRINT = iinput(in);

M->nu = finput(in);

M->rho = finput(in);

C->r = finput(in);

S->stype = cinput(in);

S->alp = finput(in);

R->A = finput(in);

R->J = finput(in);

L->M = finput(in);

L->Ph = finput(in);

XL[0] = finput(in);

*METHOD = iinput(in);

M->E = finput(in);

M->Stu = finput(in);

C->I = finput(in);

*LEB = cinput(in);

S->ll = finput(in);

R->I = finput(in);

R->N = finput(in);

L->V = finput(in);

L->sf = finput(in);

X[0] = finput(in);

XU[0] = finput(in);

*SSP = iinput(in);

M->G = finput(in);

M->Scy = finput(in);

C->fwt = finput(in);

*mflag = iinput(in);

S->MZs = finput(in);

R->Z = finput(in);

L->F = finput(in);

L->Pa = finput(in);

L->sfp = finput(in);

To1[0] = finput(in);
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XL[I] = finput(in); X[l] = finput(in);

XU[I] = finput(in); Tol[l] = finput(in);

XL[2] = finput(in); X[2] = finput(in);

XU[2] = finput(in); Toll2] = finput(in);

XL[3] = finput(in); X[3] = finput(in);

XU[3] = finput(in); Tol[3] = finput(in);

XL[4] = finput(in); X[4] = finput(in);

XU[4] = finput(in); Tol[4] = finput(in);

XL[5] = finput(in); X[5] = finput(in);

XU[5] = finput(in); Tol[5] = finput(in);

******************************* end readinput ***********/

void pinput(struct stringer S, struct ring R, struct material M,

struct load L, struct cylinder C, long int IPRINT, long int METHOD,

FILE *out, int SSP, float X[], float XL[], float XU[], int mflag,

char LEB)

{

fprintf(out,'\n\n************************ INPUT VALUES *****************');

fprintf(out,'\nFLAGS');

fprintf(out,'kn IPRINT = %d',IPRINT);

switch ( (int)IPRINT)

{

case 0: fprintf(out,"

case i: fprintf(out,"

case 2:

fprintf(out," initial/final + OBJ & X[] output to screen');

break;

case 3:

fprintf(out," initial/final + OBJ & X[] + G[] output to screen');

break;

case 4:

fprintf(out," init./final + OBJ & X[] + G[] + grads, to screen');

break;

case 5:

fprintf(out," init./final + OBJ & X[] + G[] + grads, to screen');

break;

case 6:

fprintf(out,"

break;

case 7:

fprintf(out,"

break;

}
fprintf(out,'kn METHOD = %d',METHOD);

if (2 == METHOD) fprintf(out," Sequential Linear Programming');

else fprintf(out," Modified Method of Feasible Directions');

No screen output by DOT'); break;

initial and final DOT output to screen'); break;

init./final+OBJ & X[]+G[]+grads.+S+X scales & S info');

init./final+OBJ & X[]+G[]+grads.+S+X scales & S info');

fprintf(out,'kn SSP = %d ",SSP);

switch (SSP)

{

case 0: fprintf(out,"

case i: fprintf(out,"

case 2: fprintf(out,"

case 3: fprintf(out,"

fprintf(out," final output');

Final CORSS output only'); break;

Final calculations and final output'); break;

Optimization history and final output'); break;

Optimization history, final calculations and');
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(out,'\n\nMaterial Properties');

(out,'kn nu = %-6.3f

(out,'\n E = %-II.3E

(out,'\n SM = %-II.3E

(out,'kn rho = %-6.3f

(out,"kn Stu = %-8.1f

(out,'kn Scy = %-8.1f

}

fprintf

fprintf

fprintf

fprintf

fprintf

fprintf

fprintf

fprintf

fprintf

fprintf(out,

fprintf(out,

fprintf(out,

fprintf(out,

if (S.stype

{

(out,'\nknCylinder Geometry');

(out,'kn r = %-7.2f

"\n 1 = %-7.2f

"\n fwt = %-7.2f

"\nknStringer Parameters');

"\n stype = %c

== 'H')

Poisson's Ratio',M.nu);

Young's Modulus",M.E);

Shear Modulus',M.G);

Density",M.rho);

Ultimate Tensile Stress',M.Stu);

Yield Compressive Stress',M.Scy);

Radius',C.r);

Length',C.l);

Additional Weight',C.fwt);

",S.stype);

fprintf(out,'Hat Stringers\n Local Elastic Buckling');

if ('N'==LEB) fprintf(out," NOT ALLOWED'); else fprintf(out," IS ALLOWED');

fprintf(out,'kn alp = %-5.1f Leg angle',\.alp);

fprintf(out,'kn ii = %-6.3f Stringer/skin length',S.ll);

}
else

{

fprintf(out,'I Stringerskn

if ('N'==LEB) fprintf(out,"

fprintf(out,'kn

if (0==mflag)

fprintf(out," while coupled buckling stress decreases");

else

fprintf(out," to %d',mflag);

fprintf(out,'\n alp = %-5.3f

fprintf(out,'\n ii = %-4.3f

}

fprintf(out,'kn MZs = %-2.0f

if (-i == S.MZs) fprintf(out,'internal');

fprintf(out,'knknRing Parameters');

if (0 == R.N) fprintf(out,'\n No

else

{

fprintf(out,'kn Ar = %-7.4f

fprintf(out,'\n Ir = %-8.5f

fprintf(out,'kn Zr = %-7.4f

fprintf(out,'\n Nrng = %-2.0f

}

fprintf(out,'kn\nLoads');

fprintf(out,"\n\nDesign

fprintf(out,'knVar.

fprintf(out,'\nh %14.4f

Local Elastic Buckling');

NOT ALLOWED'); else fprintf(out,"

increase m from i');

fprintf(out,'kn F = %-9.1f

fprintf(out,'\n M = %-II.4G

fprintf(out,'kn V = %-8.1f

fprintf(out,'\n Pa = %-6.3f

fprintf(out,'kn Ph = %-6.3f

fprintf(out,'kn sf = %-5.2f

fprintf(out,'kn sfp = %-5.2f

Variables');

Minimum

Web Angle',S.alp);

else

Rings");

IS ALLOWED');

bottom flange thickness',S.ll);

Stringers ",S.MZs);

fprintf(out,'external");

Cross sectional area',R.A);

Moment of inertia",R.I);

Neutral Axis Distance",R.Z);

Number of Rings',R.N);

Axial Compression',L.F);

Bending Moment',L.M);

Shear force',L.V);

Axial pressure component",L.Pa);

Hoop pressure component",L.Ph);

Safety factor',L.sf);

Plate buckling safety factor',L.sfp);

%12.4f

Initial Maximum

%12.4f Stringer height",

XL[0],X[0],XU[0]);

Name");
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fprintf(out,'\nl2 %13.4f %12.4f %12.4f Top flange ",XL[I],X[I],XU[I]);

if ('H' == S.stype) fprintf(out,'length'); else fprintf(out,'thickness');

fprintf(out,"\ntst %12.4f %12.4f %12.4f ",XL[2],X[2],XU[2]);

if ('H' == S.stype) fprintf(out,'Stringer thickness');

else fprintf(out,'Web thickness');

fprintf(out,'\nNst %12.1f %12.1f %12.1f Number of stringers',

XL[3],X[3],XU[3]);

fprintf(out,'\nt %12.4f %12.4f %12.4f Skin thickness',

XL[4],X[4],XU[4]);

fprintf(out,"\nW %12.4f %12.4f %12.4f ",XL[5],X[5],XU[5]);

if ('H' == S.stype) fprintf(out,'Top Flange Thickness');

else fprintf(out,'Stringer Width');

fprintf(out,"\nkn');

fflush(out);

********************************** pinput ***************/

void finalout(struct ring R, struct stringer S, struct material M,

struct load L, struct cylinder C, float G[], float gamF, float gamM,

char GCB, int mgcb, float N, int ncr, int ngcb, float Nx, float obj,

FILE *out, float Pcrush, float Scol, float Scripl, float Scrip2,

float Scrstcol, char LEB, int mdrv, float Io, float Faxial)

{

putchar('F');

fprintf(out,'kn\n ............................................ );

fprintf(out," ....................... );

fprintf(out,'knknCylinder Weight = %3.1f\n (Skin:',obj);

fprintf(out," %3.1f, Stringers:

%3.1f', (pi*2*C.r*C.t*C.l*M.rho), (S.A*C.I*S.N*M.rho));

fprintf(out,", Rings: %3.1f, Flanges: %3.1f)', (R.A*R.N*2*pi*(C.r+R.Z)*M.rho),C.fwt);

fprintf(out,"\nknh = %6.4f, Stringer Height',S.h);

fprintf(out,'\nl2 = %6.4f, ",S.12);

if (S.stype == 'H' fprintf(out,'Hat stringer top flange length');

if (S.stype == 'I' fprintf(out,'I top flange thickness');

fprintf(out,"\ntst = %6.4f, ",S.t);

if (S.stype == 'H' fprintf(out,'Hat stringer thickness');

if (S.stype == 'I' fprintf(out,"I stringer web thickness');

fprintf(out,'knNst = %6.1f, Number of Stringers, b = %6.4f',S.N,S.b);

fprintf(out,"knt = %6.4f, Skin Thickness',C.t);

fprintf(out,"knW = %6.4f, ",S.W);

if ('H' == S.stype) fprintf(out,'Hat stringer top flange thickness');

if ('I' == S.stype) fprintf(out,"I stringer width');

fprintf(out "\nknStringer: I = %f, J = %f, Z = %f, A = %f',S.I,S.J,S.Z,S.A);

fprintf(out "\nEnd Ring I should be at least ");

fprintf(out "%g", .172*Scrstcol*(S.A+S.b*C.t)*C.r*C.r*C.r/R.d/M.E );

fprintf(out "\nEnd Ring Area should be at least");

fprintf(out " %g*(r+Z)',4*pi*pi*S.I*C.r/S.b/pow(R.d,3));

fprintf(out "\n\tkt\t\t\t\t\t\t G[] value");

fprintf(out "\nSkin: (Shear ratio)**2 + Stress ratio\tit = %7.5f < 1

%II.5f",G[0]+I,G[0]);

fprintf(out,'knknApplied Column Stress (SF = %4.2f) = %ll.lf',

L.sf,Scol);

if ('I'==S.stype)

{

fprintf(out,
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"\n Critical Coupled Buckling Stress (m = %3d)

fprintf(out,"%15.5f',G[4]);

if ('N'==LEB)

fprintf(out,

"\n Critical Flange Elastic Buckling Stress

else

fprintf(out,

"\n Critical Stringer Crippling Stress

fprintf(out,"%15.5f",G[3]);

}
else

{

if ( 'N' ==LEB)

{

fprintf(out,

"\n Critical Local Buckling Stress (flange)

fprintf(out,'%15.5f',G[3]);

fprintf(out,

"\n Critical Local Buckling Stress (web)

fprintf(out,"%15.5f",G[4]);

}

else

{

fprintf(out,

"\n Critical Stringer Crippling Stress

fprintf(out,'%15.5f',G[3]);

}

)

fprintf(out,'kn

if ('N' == GCB)

{

fprintf(out,"

Critical Column Stress ");

= %8.1f",mdrv, Scrip2);

M. Scy);

= %8.1fN,Scripl);

= %8.1f",Scripl);

= %8.1f',Scripl);

= %8.1f",Scrip2);

= %8.1f",Scripl);

= %8.1f',Scrstcol);

fprintf(out,'%15.5f',G[l]);

}

else fprintf(out,"controlled by General Cylinder Buckling');

fprintf(out,"\n\nApplied Von Mises Stress (SF = %4.2f)

L.sf, (G[2]+I)*M.Scy);

fprintf(out,'kn Yield Compressive Stress

fprintf(out,'%15.5f',G[2]);

if ('N' == GCB)

{

fprintf(out,'kn\nGeneral Cylinder Buckling controlled by ");

fprintf(out,'Critical Column Buckling");

}
else

{

fprintf(out,"\nknCylinder: Line Load ratio + Pressure ratio");

fprintf(out," = %7.5f < 1%II.5f',G[I]+I,G[I]);

fprintf(out,'\nApplied Cylinder Line Load (SF = %4.2f)

L.sf, (L.M*L.sf*C.r/Io*(S.A/S.b+C.t) + Faxial*(S.A/S.b+C.t)

fprintf(out,"\nKnockdown Adjusted Line Load

N);

fprintf(out,

fprintf(out,

= %ll.lf',

) );

= %ll.lf',

Critical General Cylinder Buckling Line Load = %8.1f",

Nx);

Axial half waves, m = %i, Hoop waves, n = %i",
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fprintf(out,'\n

fprintf(out,"\n

if ( (mgcb != I) && (mgcb == R.N+I) )

{

fprintf(out,'\nAxial half waves = Number of Cylinder segments");

fprintf(out,"\n Rings may not support general buckling");

}

}

if (L. Ph<0.0)

{

fprintf(out,'\nApplied Crushing Hoop Pressure (SF = %4.2f)

L.sf,-L.Ph*L.sf);

fprintf(out,"kn Critical Buckling Pressure

mgcb, ngcb);

Axial Knockdown Factor, gammaF = %6.4f',gamF);

Bending Knockdown Factor, gammaM = %6.4f',gamM);

Pcrush);

fprintf(out,"kn Hoop waves, n = %i",ncr);

}

if ((Nx*(S.A/S.b+C.t))>M.Scy)

{
If load increases over limit load, critical');

buckling will decrease due to plasticity.');

fprintf(out,"\n

fprintf(out,"kn

= %16.3f',

= %8.3f',

float colstress(float *Anew, struct stringer S, float d, float E,

struct load L, struct cylinder C, float Faxial, float Io, FILE *out,

float *St, float *Scol, float Scrip, float Scrpl, float *Scrstcol,

float Sskbd, int SSP, float taucr, float tauskbd, float Ysk[],

float Yst[])

float be, Ise,radg,ScrstcolJE,We0,tmp;

putchar('C');

*Scol = L.M*L.sf*C.r/Io + Faxial;

be = S.b;

if (L.sfp<L.sf)

{
if (L.sf/L.sfp*Sskbd/Scrpl+pow(L.sf/L.sfp*tauskbd/taucr,2) > i)

{
*Scol = loopI(Anew, S,L.M,L.sf,E,C,Faxial,Io,out,St,Scrpl,SSP,

&We0,Ysk,Yst);

if (S.stype == 'H')

{

if ( (tmp=S.ll+S.12+2*S.la) < 2*We0 ) be=tmp; /* between legs */

else be=2*We0;

if ( (tmp=S.b-S.ll-2*S.la-S.12) < 2*We0 ) be+=tmp;

else be+=2*We0;

}

else if ( S.b > 2*We0 ) be=2*We0;

}
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}
Ise = be*C.t*C.t*C.t/12. + S.I + S.A*S.Z*S.Z - S.A*S.A*S.Z*S.Z/(S.A+be*C.t);

if (Ise<0) Ise = 0.00001;

radg = sqrt(Ise/(S.A+be*C.t));

if (d/radg <= pi*sqrt(2*E/Scrip) )

{

*Scrstcol = Scrip - Scrip*Scrip/4/pi/pi/E*d*d/radg/radg;

if (SSP == 4)

fprintf(out,'\n\nJohnson-Euler Column Buckling (Scrip = %g) = %g",

Scrip,*Scrstcol);

}
else

{

*Scrstcol = pow(pi*radg/d,2)*E;

if (SSP == 4)

fprintf(out,'\nknEuler Column Buckling = %g',*Scrstcol);

}

if (SSP == 4)

{

fprintf(out,'knApplied Stress = %8.1f",*Scol);

fprintf(out,"knEffective skin width on stringer with max stress = %f",be);

fprintf(out,"knStringer+Skin I = %6.4f, radius of gyration = %6.4f",

Ise,radg);

}

return(*Scol/(*Scrstcol) -i. );

************************************************* end colstress */

float loopI(float *Anew, struct stringer S, float M, float sf, float E,

struct cylinder C, float Faxial, float Io, FILE *out, float *St,

float Scrpl, int SSP, float *We0, float Ysk[], float Yst[])

float Acyl, I, Iold, ybar;

int count;

count = 0; ybar = 0;

Acyl = 2*pi*(C.r-C.t/2)*C.t+S.N*S.A;

*Anew = Acyl;

while( fabs((Iold-I)/Iold) > .001 )

{

I = Io/2; Iold = Io;

Iold = I; count++;

newI(Acyl,Anew, S,M, sf,C.t,E,Faxial,&I,Io,out,Scrpl,SSP,We0,

&ybar,Ysk,Yst);

if (count == 20)

{

fprintf(out,"\nDid not converge on a Cylinder I in 20 iterations,");

fprintf(out," I = %2.0f, I set to 1/2 Io =",I);

I = Io/2;

fprintf(out," %2.0f, t = %6.4f, Nst = %5.1f",I,C.t,S.N);

break;

}

*St = -M*sf*(C.r-ybar)/I + Faxial*Acyl/(*Anew);

if (SSP == 4)

{

fprintf(out,"\nknNumber of iterations to converge on I, %d",count);
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fprintf(out,'\n\nTension load (adjusted for buckled skin) = %8.1f',*St);

newi(Acyl,Anew, S,M, sf,C.t,E, Faxial,&I,Io,out,Scrpl,6,We0,&ybar,Ysk,Yst);

}
return( M*sf*(C.r+ybar)/I + Faxial*Acyl/(*Anew) );

************************************************* end loopI */

void newI(float Acyl, float *Anew, struct stringer S, float M, float sf,

float t, float E, float Faxial, float *I, float Io, FILE *out,

float Scrpl, int SSP, float *We0, float *ybar, float Ysk[],

float Yst[])

{
float A, Slb, Ssk[541+l],Sst[541+l],sumA, sumAy,sumAyy,We[541+l],tmp;

int i,N;

N = S.N/2; Slb = .9*Scrpl;

if (SSP == 6)

{

fprintf(out,'\n\nStress Carried in Buckled Skin, Slb = %7.1f',Slb);

fprintf(out,'kn\n I Y-Stringer Y-skin Stress-str.');

fprintf(out," Stress-skin Eff. Width');

}

for (i=0; i<N/2+l; i++)

{
Sst[i] = Faxial*Acyl/(*Anew) + M*sf/(*I)*(Yst[i]+(*ybar));

Ssk[i] = Faxial*Acyl/(*Anew) + M*sf/(*I)*(Ysk[i]+(*ybar));

if (Sst[i] < 0) We[i] = S.b;

else if ( (We[i] = .85*t*sqrt(E/Sst[i])) > S.b ) We[i] = S.b;

if (SSP == 6) fprintf(out,'\n%3i %13.4f %13.4f %13.1f %13.1f %13.4f',

i,Yst[i],Ysk[i],Sst[i],Ssk[i],We[i]);

}
A = 0; sumA = 0; sumAy = 0; sumAyy = 0;

if (SSP == 6)

{
fprintf(out,'kn\n I Area sum Area

fprintf(out," sum Area*y*y skin/str.');

}

for (i=0; i<(N/2); i++)

{
if ( (S.stype == 'H') && (Sst[i] > 0) )

if ( (tmp = S.12+2*S.Ia+S.II) > (2*We[i]) )

{
A = 2*( t*(Sst[i] - Slb)/Sst[i]*(tmp-2*We[i]) );

sumA += A; sumAy += A*Yst[i]; sumAyy += A*Yst[i]*Yst[i];

if (SSP == 6)

fprintf(out,"kn%3i %15.3f %15.3f %15.3f %15.3f stringer',

i,A, sumA, sumAy,sumAyy);

}
if (Ssk[i] > 0)

{

if (S.stype == 'H')

{
if ( (tmp=S.b-(S.12+2*S.la+S.ll)) > (We[i] + We[i+l]) )

{
A = 2*( t*(Ssk[i] - $1b)/Ssk[i]*(tmp-We[i]-We[i+l]) );

sumA += A; sumAy += A*Ysk[i]; sumAyy += A*Ysk[i]*Ysk[i];

We[N] = We[0];

sum Area*y');

73



if (SSP == 6) fprintf(out,'\n%3i %15.3f %15.3f %15.3f %15.3f skin',

i, A, sumA, sumAy, sumAyy) ;

)

}
else if ( S.b > (We[i]+We[i+l]) )

{
A = 2*( t*(Ssk[i] - Slb)/Ssk[i]*(S.b-We[i]-We[i+l]) ) ;

sumA += A; sumAy += A*Ysk[i]; sumAyy += A*Ysk[i]*Ysk[i] ;

if (SSP == 6) fprintf(out,"kn%3i %15.3f %15.3f %15.3f %15.3f skin',

i, A, sumA, sumAy, sumAyy) ;

}

)

*We0 = We[0] ;

*Anew = Acyl-sumA;

*ybar = sumAy/(*Anew);

*I = Io - sumAyy - (*Anew)*(*ybar)*(*ybar);

if (SSP==6) fprintf(out,

"\n\n Ybar = %7.3f, Cylinder I = %9.1f, Anew = %9.1f',

*ybar, *I, *Anew) ;

} ******************************************************* end newI */

void stringer(struct stringer *S, struct cylinder C, FILE *out, int SSP)

{

int i, na;

float a[5],ad[5],add[5],alpha,d[5],ha, I[5],ix, sumad, sumadd, sumi,ybar,

kl,k2,al,D;

/* float iy, xbar; */

putchar('S');

alpha = S->alp*pi/180;

if (S->stype == 'H')

{

na = 5; ha = (S->h-S->t-S->W)/cos(alpha);

S->la = ha*sin(alpha);

a[0] = S->ll*S->t; a[l] = ha*S->t; a[2] = S->12*S->W;

a[3] = a[l]; a[4] = a[0];

d[0] = S->t/2; d[l] = S->h/2; d[2] = S->h-S->W/2;

d[3] = d[l]; d[4] = d[0];

I[0] = S->ll*pow(S->t,3)/12;

I[l] = S->t*ha/12*

(ha*ha*cos(alpha)*cos(alpha) + S->t*S->t*sin(alpha)*sin(alpha) );

I[2] = S->12*pow(S->W,3)/12;

I[3] = I[l]; I[4] = I[0];

S->J = 4*pow( (S->h+C.t/2-S->W/2)*(S->12+S->la) , 2.)

/( (S->12+2*S->la)/C.t + 2*ha/S->t + S->I2/S->W) ;

)

if (S->stype == 'I')

{

na = 3; ha = (S->h-S->12-S->ll)/cos(alpha);

a[0] = S->W*S->II; a[l] = S->t*ha; a[2] = S->W*S->12;
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d[0] = S->ii/2; d[l] = (S->h-S->12-S->ll)/2+S->ll; d[2] = S->h-S->12/2;

I[0] = S->W*pow(S->ll,3)/12;

Ill] = S->t*ha/12

* (ha*ha*cos(alpha)*cos(alpha)+S->t*S->t*sin(alpha)*sin(alpha));

I[2] = S->W*pow(S->12,3)/12;

kl = S->W*S->12"S->12"S->12

*( 1./3. - .21 * S->12 / S->W * (i. - pow( S->12 / S->W ,4) / 12 ));

k2 = (S->h-S->12)*S->t*S->t*S->t

*(1./3. - .105*S->t/(S->h-S->I2)*(I. - pow(S->t/(S->h-S->12),4)/192]);

if (S->I2<S->t) al = S->12/S->t*.15; else al = S->t/S->12".15;

if (S->t>(2"S->12)) D=S->t; else D = S->12 + S->t*S->t/4./S->I2;

S->J = kI+k2+aI*D*D*D*D;

sumad = 0; sumadd = 0; sumi = 0;

sumad += ad[i]; sumadd += add[i];

}

S->A = 0;

for (i=0; i<na; i++)

{

ad[i] = a[i]*d[i];

S->A += a[i];

}

ybar = sumad/(S->A);

add[i] = ad[i]*d[i];

sumi += I[i];

ix = sumi + sumadd - ybar*sumad;

if (SSP == 4) stringerP(na,a,d,ad,add, I,S->A,ybar, ix,

"\nA = %f, ybar = %f, Ix = %f',out);

/*

if {S->stype == 'H')

{

d[0] = S->Ii/2; dill = S->ll+(S->la)/2;

d[2] = S->ll+(S->la)+S->12/2;

d[3] = S->ll+(S->la)+S->12+(S->la)/2;

d[4] = S->II+2"(S->Ia)+S->12+S->II/2;

I[0] = S->t*S->ll*S->ll*S->ll/12;

Ill] = S->t*ha/12*(ha*ha*cos(pi/2-alpha)*cos(pi/2-alpha)

+ S->t*S->t*sin(pi/2-alpha)*sin(pi/2-alpha) );

I[2] = S->W*S->12"S->12"S->12/12;

I[3] = Ill];

I[4] = I[0];

d[l] = S->W/2;

I[0] = S->ll*pow(S->W,3)/12;

I[l] = S->t*ha/12

* (ha*ha*cos(pi/2-alpha)*cos(pi/2-alpha)

+ S->t*S->t*sin(pi/2-alpha)*sin(pi/2-alpha));

I[2] = S->12*pow(S->W, 3)/12;

}

if (S->stype == 'I')

{

d[0] = s->w/2;

add[i] = ad[i]*d[i];

sumadd += add[i];

}

sumad = 0; sumadd = 0;

for (i=0) i<na; i++)

{

ad[i] = a[i]*d[i];

sumad += ad[i];

}

xbar = sumad/(S->A);

iy = sumi + sumadd - xbar*sumad;

sumi = 0;

if (SSP == 4) stringerP(na,a,d,ad,add, I,S->A, xbar, iy,

"\hA = %f, xbar = %f, Iy = %f',out);

d[2] = S->W/2;

sumi += I[i];
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*/
S->I = ix; /* S->J = ix+iy; */ S->Z = ybar+C.t/2.;

S->J = ix/100; */

} ******************************************************* end stringer */

void stringerP(int na, float a[], float d[], float ad[], float add[],

float I[], float A, float bar, float ia, char line[I,

FILE *out)

int i;

fprintf(out,'\n\n');

for (i=0;1<na;i++) fprintf(out,'Area %i

for (i=0;l<na;i++) fprintf(out,'%f

for (i=0;l<na;i++) fprintf(out,'%f

for (i=0;1<na;i++) fprintf(out,'%f

for (i=0;l<na;i++) fprintf(out,'%f

for (i=0;l<na;i++) fprintf(out,'%f

fprintf(out,line,A,bar, ia);

",i);

",a[i]);

",d[i]);

",ad[i]);

fprintf(out,'kn");

fprintf(out,'Area\n');

fprintf(out,'dkn");

fprintf(out,'A*d\n');

",add[i]); fprintf(out,'A*d*dkn');

",I[i]); fprintf(out,'I');

float skinbuck(struct stringer S, float d, struct material M,

struct load L, struct cylinder C, float Faxialp, float Io, FILE *out,

float *Scrpl, float *Sskbd, int SSP, float *Stsk, float *tau,

float *tau0, float *taucr, float *tauskbd, float Ysk[], float Yst[])

{

int i;

float alpha,bpl,g0,g0max, K,Ki,Kcr,Ksh,qmax, q[272],Ssk[272],Z;

if (S.stype == 'I') bpl = S.b;

if (S.stype == 'H')

if ( (S.12+2*S.Ia+S.II) > (S.b-S.12-2*S.Ia-S.II) ) bpl = S.12+2*S.Ia+S.II;

else bpl = S.b-S.12-2*S.Ia-S.II;

Z = bpl*bpl/C.r/C.t*sqrt(l-M.nu*M.nu);

Kcr = Kc(Z,C.r,C.t);

Ksh = Ks(Z);

if (Ksh < 5.4) Ksh = 5.4;

if (Kcr < 4) Kcr = 4.;

if (4==SSP)

{

if (C.r/C.t<lO0.)

fprintf(out,'kn\nWARNING: r/t < 100, Kc based on r/t = I00");

if (C.r/C.t>3000.)

fprintf(out,'kn\nWARNING: r/t > 3000., Kc based on r/t = 3000");

if (Z>20000.)

fprintf(out,'\n\nWARNING: Z > 20000., Kc is extrapolated");

}

*Scrpl = Kcr*pi*pi*M.E/12/(l-M.nu*M.nu)*pow((C.t/bpl),2);
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*tauer = Ksh*pi*pi*M.E/12/(l-M.nu*M.nu)*pow((C.t/bpl),2);

if (L.Ph>.001)

{

alpha = L.Ph*C.r*C.r/M.E/C.t/C.t;

K = 9*pow(C.t/C.r,.6)*(l+.21*alpha*pow(C.r/C.t,.6))/(l+3*alpha);

K1 = .16*C.r/C.t*pow(C.t/d,l.3);

*Scrpl += (K+KI)*M.E*C.t/C.r;

*taucr += ( 0 ) ;

if (SSP == 4)

fprintf(out,'\n\nPressure Stabilization: Alpha = %f, K = %f, K1 = %fin',

alpha,K,Kl);

}
if (SSP == 4)

{

fprintf(out,'\n\nScrpl = %8.1f,

fprintf(out,'knbpl = %7.4f,

taucr = %8.1f',*Scrpl,*taucr);

Kc = %8.4f, Ks = %8.4f',bpl,Kcr,Ksh);

fprintf{out,', Z = %7.4f',Z);

}

q[0] = -L.V*L.sfp/Io*S.A/2*Yst[0];

Ssk[0] = L.M*L.sfp*C.r/Io + Fax\alp;

g0max = fabs(Ssk[0])/(*Scrpl) + pow( (fabs(q[0])/C.t)/(*taucr) , 2 ) - I.;

*Sskbd = fabs(Ssk[0]);

*tauskbd = fabs(q[0])/C.t;

if (SSP == 4)

{

fprintf(out,'kn\n N q[I] Ssk[I]');

fprintf(out," G[0]');

fprintf(out,'\n 0 %20.3f %20.3f %20.3f',q[0],Ssk[0],g0max);

}

qmax = fabs(q[0]);

for (i=l; i<(S.N/4+2); i++)

{

q[i] = q[i-l] - L.V*L.sfp/Io*S.A*Yst[i];

Ssk[i] = L.M*L.sfp*Ysk[i]/Io + Fax\alp;

gO = fabs(Ssk[i])/(*Scrpl) + pow( (fabs(q[i])/C.t)/(*taucr) , 2 ) - i.;

if (g0>g0max)

{

g0max = gO;

*Sskbd = fabs(Ssk[i]);

*tauskbd = fabs(q[i])/C.t;

}

if (fabs(q[i])>qmax) qmax = labs(q[\]);

if (SSP == 4) fprintf(out,'\n%4i %20.3f %20.3f %20.3f',i,q[i],Ssk[i],g0);

}

*tau = qmax/C.t;

*Stsk = Ssk[0];

*tau0 = q[0]/C.t;

if (SSP == 4)

{

fprintf(out,'\nknMax shear stress = %8.1f, Max skin stress = %8.1f',

*tau,*Stsk);

fprintf(out,

"\nSkin Buckling Drivers: Stress = %8.1f, Shear Stress = %8.1f",

*Sskbd,*tauskbd);

}

return(g0max);
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float Ks(float Z)

{
return( 4.94002871 + 2.83295655E-I*Z

- 8.48571232E-3*Z*Z + 2.96028833E-4*Z*Z*Z

- 5.59394768E-6*pow(Z,4) + 5.12790432E-8*pow(Z,5)

- 1.79230370E-10*pow(Z,6) );

float Kc(float Z, float r, float t)

{

float M, B;

if (Z<4.) return (4.);

if (r/t<100)

{

M = 0.;

B = Kcl00(Z);

)

else if (r/t < 300)

{

M = (Kc300(Z) - Kcl00(Z) )/200;

B = KcI00(Z) - M*I00;

)

else if (r/t < 500)

{

M = (Kc500(Z) - Kc300(Z) )/200;

B = Kc300(Z) - M'300;

}

else if (r/t < 1000)

{

M = (KcI000(Z) - Kc500(Z) )/500;

B = Kc500(Z) - M*500;

}

else if (r/t < 1500)

{

M = (Kcl500(Z) - Kcl000(Z) )/500;

B = KcI000(Z) - M*I000;

}
else

{

M = 0.;

B = KcI500(Z);

}

return(M*(r/t) + B );

} ************************************************* end Kc *******/

float Kcl00(float Z)

{

float y = Z-4.;
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if (Z<40) return( -.000179569*y*y*y + .0154754*y*y + .0089413"y + 4.);

else return(.4*Z);

float Kc300(float Z)

{

float y = Z-4.;

if (Z<40) return( -.000159922*y*y*y + .0140199*y*y + .00810034"y + 4.);

else return(.375*Z);

}

float Kc500(float Z)

{

float y = Z-4.;

if (Z<40) return( -.000127178*y*y*y + .011594*y*y + .00669873"y + 4.);

else return(Z/3.);

}

float Kcl000(float Z)

{

float y = Z-4.;

if (Z<40) return( -.000100982*y*y*y + .00965326*y*y + .00557741"y + 4.);

else return(.3*Z);

}

float Kc1500(float Z)

{

float y = Z-4.;

if (Z<40) return( -6.1688E-5*y*y*y + .00674219*y*y + .00389547"y + 4.);

else return(.25*Z);

}

float getScrip(struct stringer S, struct material M, FILE *out,

float *Scripl, float *Scrip2, float *ScripS, int SSP, int *mdrv,

float i, int mflag, char LEB)

{
float SI,S2,S3,S4,alpha;

int m;

putchar('C');

alpha = S.alp*pi/180;

if (S.stype == 'I')

{
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$2 = findICBuc(mflag,mdrv, l,S.t,M.nu,S.h,S.12,S.W,M.E,SSP,out);

if (4==SSP) fprintf(out,'\nCoupled Buckling Stress, %9.2f',S2);

$3=.569311 / pow(sqrt(M.Scy/M.E*(S.W/2)/S.12), .812712 ) * M.Scy;

if ((S.h-S.12-S.II)<=0) domainexit(S.12,S.ll,S.h, out);

S4=l.387194/pow(sqrt(M.Scy/M.E*((S.h-S.12-S.ll)/cos(alpha))/S.t),.807179)

• M.Scy;

if ($3 > M.Stu) $3 = M.Stu;

if ($4 > M.Stu) $4 = M.Stu;

•Scrips = S1 = ( S3*S.12*S.W + S4*S.t*((S.h-S.12-S.ll)/cos(alpha)) )

/ ( S.A - S.ll*S.W );

if (4==SSP)

fprintf(out,'knCrippling: Top Flange = %8.1f, Web = %8.1f',S3,S4);

if ('N' == LEB )

{

Sl=.456*pi*pi/12*M.E/(l-M.nu*M.nu)*pow(S.12/(S.W/2),2);

if (4==SSP) fprintf(out,'knFlange Elastic Buckling Stress, %9.2f',Si);

}

}
else

{

if (S.12>S.t)

S3 = 1.387194 / pow(sqrt(M.Scy/M.E*(S.12-S.t)/S.t), .807179 ) * M.Scy;

else S3 = 0;

S4 = 1.387194/ pow(sqrt(M.Scy/M.E*((S.h-S.W-S.t)/cos(alpha))/S.t),

.807179)*M.Scy;

if ($3 > M.Stu) $3 = M.Stu;

if ($4 > M.Stu) S4 = M.Stu;

• Scrips = S1 = ( S3*S.W*S.12 + 2*S4*S.t*((S.h-S.W-S.t)/cos(alpha)) ) /

( S.A - S.ll*S.t*2 );

if (4==SSP)

fprintf(out,'\n\nCrippling: Top Flange = %8.1f, Web = %8.1f',S3,S4);

if ('N'==LEB)

{

if (S.12 == 0) S.12 = I.E-6;

Sl = 3.29*M.E/(l-M.nu*M.nu)*pow(S.W/(S.12-S.t),2);

S2 = 3.29*M.E/(l-M.nu*M.nu)*pow(S.t/((S.h-S.W-S.t)/cos(alpha)),2) ;

if (4==SSP)

{

fprintf(out,'\nCritical Local Elastic Buckling Stress:');

fprintf(out,'\n Top Flange = %9.2f, Web = %9.2f',Si,S2);

}

)

else $2 = M.Stu;

}

if (4==SSP)

fprintf(out,'\nWeighted Average Crippling Stress, %9.2f',*ScripS);

*Scripl = SI;

*Scrip2 = $2;

******************************************************** end getScrip */

float findICBuc(int mflag, int *mdrv, float i, float tst, float nu, float h,

float 12, float W, float E, int SSP, FILE *out)

{

float Sdrv, S,Slast;
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int i,m;

m=0;

S = IE30;

if (mflag==0)

{

do

{

m++;

Slast = S;

S = secant(m,l,tst,nu,h,12,W,E);

if (4==SSP) fprintf(out,"\nm = %d, Critical Stress = %f",m,S);

} while ((S-Slast)<0);

*mdrv = m-l;

Sdrv = Slast;

}

else

{

Sdrv = S;

for (i=l; i<=mflag; i++)

{
S = secant(i,l,tst,nu,h,12,W,E);

if (S<Sdrv) { Sdrv=S; *mdrv=i; }

if (4==SSP) fprintf(out,'knm = %d, Critical Stress = %f',i,S);

}

}
return (Sdrv);

*********************************** findICBuc ***********/

float secant(int m, float I, float tst, float nu, float h, float 12, float W,

float E)

{

float Fj,hold,Fi,Smin,Smax, Si,Sj;

int i,count;

count=0;

Smin = Sj = m*m*pi*pi*E*tst*tst/I/i/12/(l-nu*nu)+l.;

Fj = G6eqn(Sj, (float)m,l,tst,nu,h,12,W,E);

Si = 2*Sj;

Fi = G6eqn(Si, (float)m,l,tst,nu,h,12,W,E);

while (((Fi<0)&&(Fj<0)) li ((Fi>0)&&(Fj>0)))

{
Si *= 2;

Fi = G6eqn(Si, (float)m,l,tst,nu,h,12,W,E);

}

Sj = Si/2;

Smax = Si;

Fj = G6eqn(Sj, (float)m,l,tst,nu,h,12,W,E);

do

{
if ( Si<Smin ) Si=Smax;

hold = Si;

Fi = G6eqn(Si, (float)m,l,tst,nu,h,12,W,E);

if ((Si==Sj) il (Fi==Fj)) break; else Si = Sj - Fj/( (Fi-Fj)/(Si-Sj));

Sj = hold;

Fj = Fi;
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if (count++>20) break;

} while (fabs(Fi) > .001 );

return (Si);

************************************** secant **********/

float G6eqn(float S, float m, float i, float tst, float nu, float h,

float 12, float W, float E)

{

float M, Nx, D, kl,alpha,beta,b,I,Ab, k2,k3;

M = m*m*pi*pi/I/l;

Nx = S*tst;

D = E*tst*tst*tst/12/(l-nu*nu);

kl = sqrt(Nx*M/D);

alpha = sqrt(M+kl);

beta = sqrt(-M+kl);

b = h-12;

I = 12*W*W*W/12;

Ab = W*I2;

k2 = E*I*sin(beta*b)*M*M;

k2 += D*(( beta*beta*beta+beta*(2-nu)*M)*cos(beta*b));

k2 -= Ab*S*sin(beta*b)*M;

k2 *= (alpha*alpha-nu*M)*sinh(alpha*b);

k3 = E*I*sinh(alpha*b)*M*M;

k3 -= D*((alpha*alpha*alpha-alpha*(2-nu)*M)*cosh(alpha*b));

k3 -= Ab*S*sinh(alpha*b)*M;

k3 *= (beta*beta+nu*M)*sin(beta*b);

return(k2+k3);

void domainexit(float 12, float ii, float h, FILE *out)

{

printf('\a\a\n\nTop flange thickness + bottom flange thickness');

printf(" > stringer height');

printf('kn%20f + %23f > %15f',12,11,h);

printf('\nThis will cause a SQRT domain error, please make sure');

printf('knthe smallest Stringer Height is greater then the');

printf('knBottom Flange Thickness plus the largest Top Flange');

printf(" Thickness');

fprintf(out,'knknTop flange thickness + bottom flange thickness');

fprintf(out," > stringer height");

fprintf(out,'kn%20f + %23f > %15f',12,11,h);

fprintf(out,'knThis will cause a SQRT domain error, please make sure');

fprintf(out,'knthe smallest Stringer Height is greater then the');

fprintf(out,'knBottom Flange Thickness plus the largest Top Flange');

fprintf(out," Thickness');

fcloseall();

exit(2);
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float GCBcalc(struct ring R, struct stringer S, struct material M,

struct cylinder C, struct load L, float G[], FILE *out, int SSP,

int *mgcb, int *ngcb, float *Nx, float *Pcr, float *N,

float Io, float Faxial, int *ncr, char *GCB, float *gamF,

float *gamM)

struct stiffness egdck;

float GI = 1000;

putchar('G');

getstiffnesses(R,S,M,C,&egdck, out,SSP);

if ((G[0]<0) II (L.sf<=L.sfp)) /* if skin doesn't buckle */

{

gencyl(C.I,R.N,C.r,egdck,mgcb, ngcb, Nx,out,SSP);

*gamM = gammaM(egdck,C.r);

*gamF = gammaF(egdck, C.r);

*N = (L.M*L.sf*C.r/Io*(S.A/S.b+C.t))/(*gamM)

+ Faxial*(S.A/S.b+C.t)/(*gamF);

if (4==SSP)

{

fprintf(out,"\n\nCritical line load is Ncr = %f',*Nx);

fprintf(out,'\nKnockdown Adjusted Line Load is %f',*N);

fprintf(out,'\nat axial waves m = %d, and hoop waves n = %d',*mgcb,*ngcb);

fprintf(out,'kngammaF = %f, gammaM = %f',*gamF,*gamM);

}
G1 = (*N)/(*Nx) - I;

if (L.Ph<0.0)

{

*Pcr= Pcrcalc(egdck,C.r,C.l,ncr,out,SSP);

G1 += -L.Ph*L.sf/(*Pcr);

if (4==SSP) fprintf(out,'\nknCritical crushing pressure Pcr = %f',*Pcr);

)

if (GI<G[I])

{

G[I] = GI;

*GCB = 'Y';

if (4 == SSP)

fprintf(out,

"\nGeneral Cylinder Buckling provides support above Column Buckling');

)

else

if (4==SSP)

fprintf(out,

"\nColumn Buckling provides support above General Cylinder Buckling');

return "( G[I]);

}

if (4==SSP)

{

fprintf(out,'\nGeneral Cylinder Buckling not checked because of');

fprintf(out," buckled skin');

}

return (G[I]);

*************************************** end GCBcalc ********/
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void gencyl(float i, float Nr, float r, struct stiffness egdck, int *mmin,

int *nmin, float *Nx, FILE *out, int SSP)

{
float Nm, Nold,Nmt;

int m, n,mm, nm;

m = i; n = i;

mm = I; nm = i;

*mmin = I; *nmin = I;

Nm = l*i/m/m/pi/pi*getA(egdck, r,l,m,n,out,SSP);

Nold = Nm*2;

*Nx = Nm;

while ((*Nx)<Nold)

{

Nold = (*Nx);

n=4;

Nm = l*i/m/m/pi/pi*getA(egdck, r,l,m,n,out,SSP);

do

{

if ( (Nmt = l*i/m/m/pi/pi*getA(egdck, r,l,m,n,out,SSP)) < Nm )

{ Nm = Nmt; mm = m; nm = n; }

n++;

} while (Nm == Nmt);

if (Nm < (*Nx) ) { *Nx = Nm; *mmin = mm; *nmin = nm; }

m++;

}

if (SSP == 4)

{

fprintf(out,'\n\nCritical Line Load, m=%d, n=%d, Ncr=%f",*mmin,*nmin,*Nx);

Nmt = getA(egdck, r,l,*mmin,*nmin,out,6);

}

if ( ((SSP==4) II (SSP==5)) && ((*mminJ=l) && (m==Nr+l)) )

{

fprintf(out,'\nknWARNING! for the critical load case, there is one");

fprintf(out,'axial half wave\nper section between rings. The rings');

fprintf(out,'may not helpknsupport general cylinder buckling.');

}

} ************************************************* end gencyl */

float Pc_calc(struct stiffness egdck, float r, float I, int *ncr, FILE *out,

int SSP)

{

float P, Pcr, Pold;

int n;

Pcr = .75*r/I/l*getA(egdck,r,l,l,l,out,SSP);

for (n=2; n<150; n++)

{

if ( (P = .75*r/n/n*getA(egdck,r,l,l,n,out,SSP)) <Pcr )

{

Pcr = P; *ncr = n;

}

}
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if (SSp == 4)

{

fprintf(out,'\n\nCritical Pressure");

P = getA(egdck, r,l,l,*ncr,out,6);

fprintf(out,

"\nCritical Pressure = %6.2f with %i circumferential waves",Pcr,*ncr);

if ( *ncr>=149 )

{

fprintf(out,'knWARNING: Program may not have calculated lowest ");

fprintf(out,'critical pressure, ncr may be greater than %d",*ncr);

}

}

return(Pcr);

************************************************* end Pcrcalc */

float getA(struct stiffness ES, float r, float i, int m, int n, FILE *out,

int SSP)

float AII,A22,A33,AI2,A21,A23,A32,A31,AI3,detA3x3,detA2x2;

All = ES.Ex*m*m*pi*pi/i/l + ES.Gxy*n*n/r/r;

A22 = ES.Ey*n*n/r/r + ES.Gxy*m*m*pi*pi/i/l;

A33 = ES.Dx*pow( m*pi/l , 4 ) + ES.Dxy*pow( m*pi*n/I/r , 2 ) +

ES.Dy*pow( n/r , 4 ) + ES.Ey/r/r + 2*ES.Cy/r*n*n/r/r +

2*ES.Cxy/r*m*m*pi*pi/i/l;

AI2'= (ES.Exy+ES.Gxy)*m*pi/l*n/r;

A21 = AI2;

A23 = (ES.Cxy + 2*ES.Kxy)*m*m*pi*pi/i/l*n/r + ES.Ey*n/r/r +

ES.Cy*pow( n/r , 3 );

A32 = A23;

A31 = ES.Exy/r*m*pi/l + ES.Cx*pow(m*pi/l,3) +

(ES.Cxy+2*ES.Kxy)*m*pi/l*n*n/r/r;

AI3 = A31;

detA3x3 = AII*A22*A33 + AI2*A23*A31 + AI3*A21*A32

- AI3*A22*A31 - AII*A23*A32 - AI2*A21*A33;

detA2x2 = All*A22 - AI2*A21;

if (SSP == 6)

{

fprintf(out,'\nkn A = 1%12.4f %12.4f

fprintf(out,'kn 1%12.4f %12.4f

fprintf(out,"\n 1%12.4f %12.4f

fprintf(out,'\nkndeterminant of A(3x3) = %G',detA3x3);

fprintf(out,"\ndeterminant of A(2x2) = %G',detA2x2);

}

return( detA3x3/detA2x2 );

} ********************************************************* end getA

%12.4f I',AII,AI2,AI3);

%12.4f I',A21,A22,A23);

%12.4f i',A31,A32,A33);

*/

void getstiffnesses(struct ring R, struct stringer S, struct material M,

struct cylinder C, struct stiffness *egdck, FILE *out,

int SSP)

{

float Er, Es, Gr, Gs;

Es = M.E; Er = M.E; Gs = M.G; Gr = M.G;
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if (0 == R.N) R.d = 1.0E35;

egdck->Ex = M.E*C.t/(l-M.nu*M.nu) + Es*S.A/S.b;

egdck->Ey = M.E*C.t/(l-M.nu*M.nu) + Er*R.A/R.d;

egdck->Exy = M.nu*M.E*C.t/(l-M.nu*M.nu) ;

egdck->Gxy = M.E*C.t/2/(l+M.nu) ;

egdck->Dx = M.E*C.t*C.t*C.t/12/(l-M.nu*M.nu) + Es*S.I/S.b

egdck->Dy = M.E*C.t*C.t*C.t/12/(l-M.nu*M.nu) + Er*R.I/R.d

egdck->Dxy = M.E*C.t*C.t*C.t/6/(l+M.nu) + Gs*S.J/S.b + Gr*R.J/R.d;

egdck->Cx = S.Z*Es*S.A/S.b;

egdck->Cy = R.Z*Er*R.A/R.d;

egdck->Cxy = C.t*C.t*C.t/12/(l-M.nu*M.nu);

egdck->Kxy = egdck->Cxy;

if (SSP == 4)

{

fprintf(out,'\n\nEx = %14.4f Ey = %14.4f

egdck->Ex, egdck->Ey,egdck->Exy);

fprintf(out,'knDx = %14.4f Dy = %14.4f

egdck->Dx, egdck->Dy,egdck->Dxy);

fprintf(out,'knCx = %14.4f Cy = %14.4G

egdck->Cx, egdck->Cy,egdck->Cxy);

Exy = %14.4f',

Dxy = %14.4f',

Cxy = %14.4G",

+ S.Z*S.Z*Es*S.A/S.b;

+ R.Z*R.Z*Er*R.A/R.d;

fprintf(out,'knGxy = %14.4f Kxy = %14.4G',egdck->Gxy,egdck->Kxy);

************************************************ end getstiffnesses */

float gammaF(struct stiffness ES, float r)

{

return (l-.901*(l-exp(-sqrt(r/pow(ES.Dx*ES.Dy/ES.Ex/ES.Ey,.25))/29.8))

}
);

float gammaM(struct stiffness ES, float r)

{

return (l-.731*(l-exp(-sqrt(r/pow(ES.Dx*ES.Dy/ES.Ex/ES.Ey,.25))/29.8))

}
);

float stresscheck(float Anew, float As, float Ns, float Ph, float r, float t,

float Faxial, FILE *out, float St, float Scol, int SSP, float tau,

float tau0, float sf)

float VMSA,VMSB,VMSC;

putchar('S');

VMSA = VMStress('Max Compression',out,SSP, Scol,-Ph*r/t*sf,tau0);

VMSB = VMStress('Max Shear',out,SSP, Faxial*(2*pi*(r-t/2)*t+As*Ns)/Anew,

-Ph*r/t*sf,tau);

VMSC = VMStress('Max Tension',out,SSP, St,-Ph*r/t*sf,tau0);

if (VMSB>VMSA) VMSA = VMSB;
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if (VMSC>VMSA) VMSA = VMSC;

return(VMSA);

*************************************************** stresscheck */

float VMStress(char loci], FILE *out, int SSP, float Sx, float Sy,

float tauxy)

{
float SI,S2,VMS;

Sl = (Sx+Sy)/2 + sqrt( (Sx-Sy)*(Sx-Sy)/4 + tauxy*tauxy );

$2 = (Sx+Sy)/2 - sqrt( (Sx-Sy)*(Sx-Sy)/4 + tauxy*tauxy );

VMS = sqrt( ( (SI-S2)*(SI-S2) + $2"$2 + SI*SI )/2 );

if (4 == SSP)

{

fprintf(out,"\nPoint of %s:',loc);

fprintf(out,'knSx = %8.1f, Sy = %8.1f,

fprintf(out,'\nSl = %8.1f, $2 = %8.1f,

}
return (VMS) ;

)

tauxy = %8.1f',Sx,Sy,tauxy);

Von Mises Stress = %8.1f",

SI,S2,VMS);
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